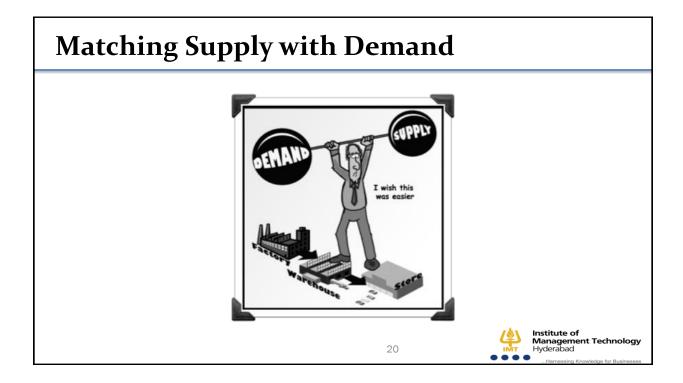
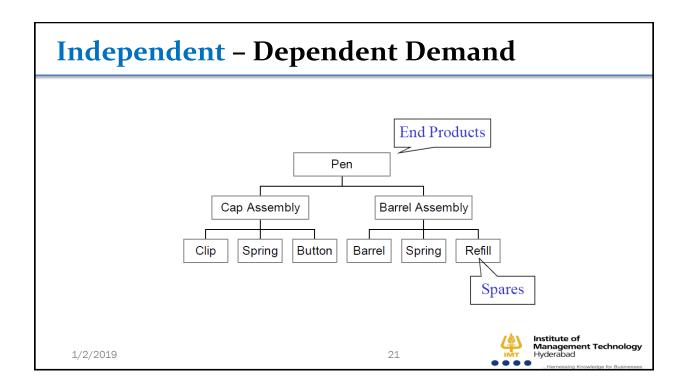
Operations & Supply Planning PGDM 2018-20

Demand Forecasting

Vinay Kumar Kalakbandi Assistant Professor Operations Management

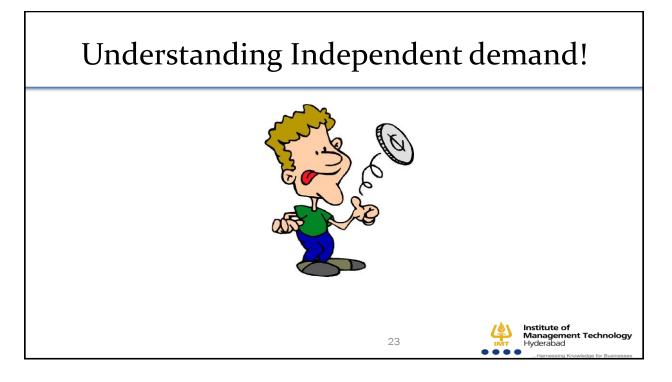

Agenda


- Understanding Demand: nature and components
- Forecasting motivation
- Forecasting techniques
 - Stationary series
 - Error measures
 - Trend
 - Seasonality
- Forecasting in the real world

18

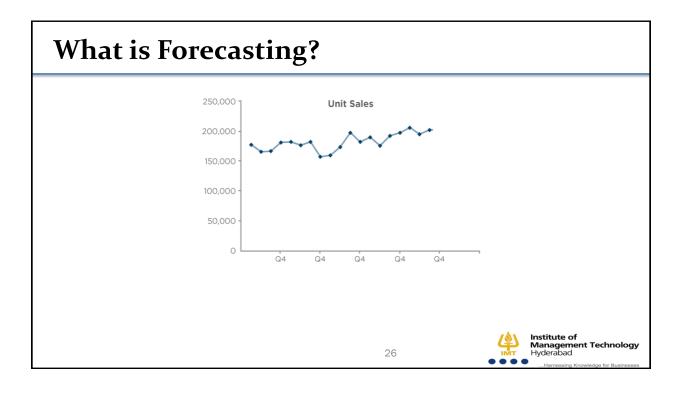
Institute of

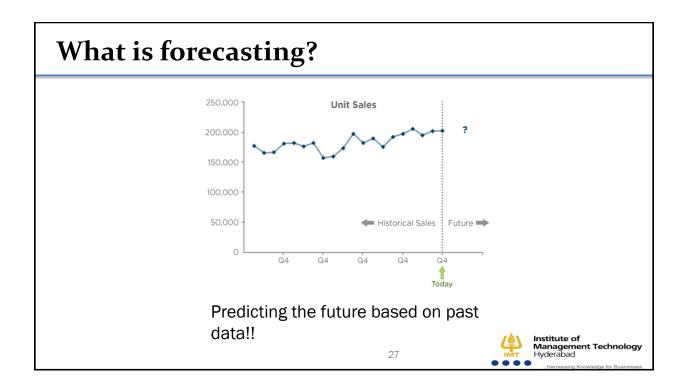
Opening question What is the key role of an operations manager? Making the right product/service available at the right place at the right time for the right customer at the right price

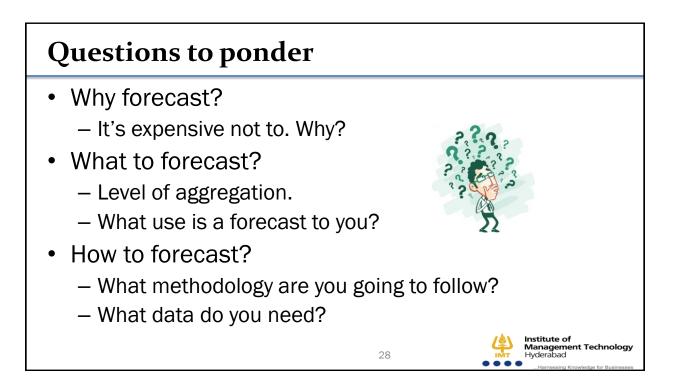


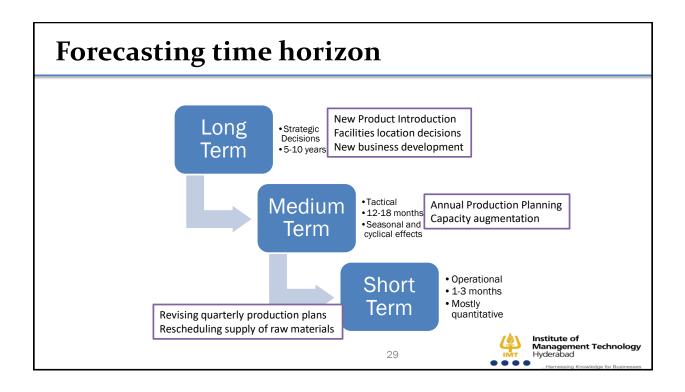
Demand Management

- Not much a firm can do about dependent demand
 - It is demand that must be met
- There is a lot a firm can do about independent demand
 - 1. Take an active role to influence demand
 - 2. Take a passive role and respond to demand

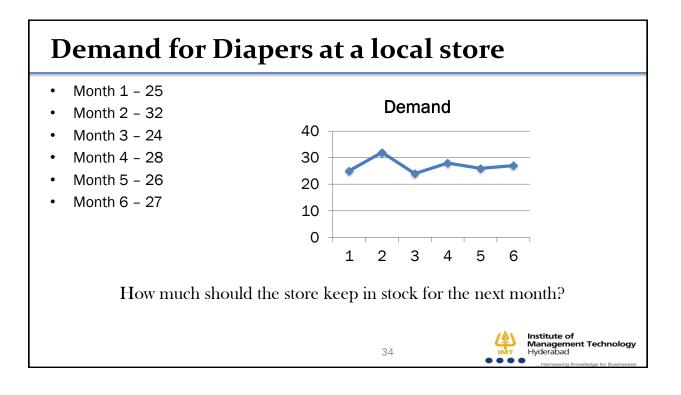

Institute of Management Technology Hyderabad




Independent Demand – Nuances


- What are the characteristics of demand?
 - Demand is not the same as sales.
 - It's random and uncertain
 - Depends several factors
 - Time of the year
 - Economic environment
 - Weather
 - Price fluctuation upward or downward
 - Sales Promotion
 - Other product demand

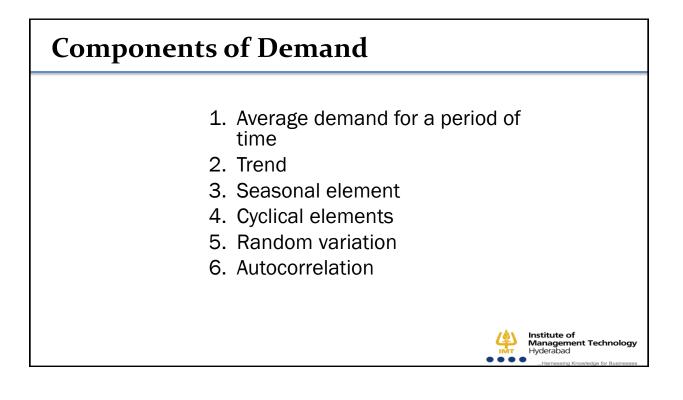
<section-header><section-header><section-header><image>


Sales force composites Salesforce provides optimistic, pessimistic and most likely forecasts Jury of executive opinions Top executives from different functional areas Customer surveys Select a sample population of customers The Delphi method

Subjective forecasts Form group of experts – anonymous Send questionnaires Collect and tabulate findings Redistribute and seek justification of outer quartiles Re-collect and tabulate findings Repeat until consensus is reached

Common biases in subjective forecasting

- Inconsistency
 - Applying different decision criteria in similar situations
- Conservatism; Recency
- Anchoring; Confirmation bias
- Uncertainty underestimation
- Reputation effect


Objective forecasting methods Extrapolative methods or time series models Using past data of same metric to predict future Causal models Using cause effect relationship

Management Technology Hyderabad

Next month demand

- Average
- Average of last four periods
- Last period demand
- Weighted average of last five periods
- Up down up down
- Remove outliers, find average

Notation Conventions

- Let $A_1, A_2, \ldots, A_n, \ldots$ be the past values of the series to be predicted (demands?). If we are making a forecast during period t (for the future), assume we have observed A_t , A_{t-1} etc.
 - Let $F_{t, t+\tau}$ = forecast made in period t for the demand in period t + τ where τ = 1, 2, 3, ...
 - Then $F_{t-1,t}$ is the forecast made in t-1 for t and
 - $F_{t,\,t+1}$ is the forecast made in t for t+1. (one step ahead) Use shorthand notation F_t = $F_{t-1,\,t}$

37

Simple averages

• The arithmetic average of the n most recent observations. For a one-step-ahead forecast:

$$F_t = (1/N) (A_{t-1} + A_{t-2} + \ldots + A_1)$$

Institute of

Institute of

Management Technology Hyderabad

Management Technology Hyderabad

Moving Averages

The arithmetic average of the n most recent observations. For a one-step-ahead forecast:

```
F_t = (1/N) (A_{t-1} + A_{t-2} + \ldots + A_{t-n})
```

Summary of Moving Averages

- Advantages of Moving Average Method
 - Easily understood
 - Easily computed
 - Provides stable forecasts
- Disadvantages of Moving Average Method
 - Requires saving lots of past data points: at least the N periods used in the moving average computation
 - Lags behind a trend
 - Ignores complex relationships in data

Institute of

Management Technology Hyderabad

Management Technology Hyderabad

What about Weighted Moving Averages?

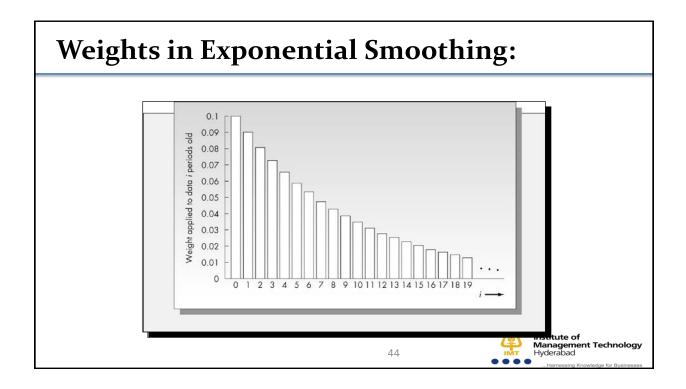
- This method looks at past data and tries to logically attach importance to certain data over other data
- Weighting factors must add to one
- Can weight recent higher than older or specific data above others
 - If forecasting staffing, we could use data from the last four weeks where Tuesdays are to be forecast.
 - Weighting on Tuesdays is: T₋₁ is .25; T₋₂ is .20; T₋₃ is .15; T₋₄ is .10 and Average of all other days is weighed .30.

41

Exponential Smoothing Method

- A type of weighted moving average that applies declining weights to past data.
- 1. $F_t = \alpha (A_{t-1}) + (1 \alpha) (F_{t-1})$

Forecast = α (most recent demand) + (1- α) (last forecast)


2. $F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$

Forecast = last forecast + α (last forecast error)

- OR -

where $0 < \alpha < 1$ and generally is small for stability of forecasts (around .1 to .2)

Exponential Smoothing (cont.) In symbols: $F_{t+1} = \alpha A_t + (1 - \alpha) F_t$ $= \alpha A_t + (1 - \alpha) (\alpha A_{t-1} + (1 - \alpha) F_{t-1})$ $= \alpha A_t + (1 - \alpha) (\alpha) A_{t-1} + (1 - \alpha)^2 (\alpha) A_{t-2} + \dots$ • Hence the method applies a set of exponentially declining weights to past data. It is easy to show that the sum of the weights is exactly one. $\{ \text{Or}: F_{t+1} = F_t - \alpha (F_t - A_t) \}$

Institute of

Management Technology Hyderabad

Management Technology Hyderabad

Effect of seed forecast on the overall forecasting

- What should be the value of the forecast of the first period?
- Does it really matter which value is taken?

Effect of α value on the Forecast

- Small values of α means that the forecasted value will be stable (show low variability)
 - Low \pmb{lpha} increases the lag of the forecast to the actual data if a trend is present
- Large values of α mean that the forecast will more closely • track the actual time series

Comparison of MA and ES

- Similarities
 - Both methods are appropriate for stationary series
 - Both methods depend on a single parameter
 - Both methods lag behind a trend

Comparison of MA and ES

- Differences
 - ES carries all past history (forever!)
 - MA eliminates "bad" data after N periods
 - MA requires all N past data points to compute new forecast estimate while ES only requires last forecast and last observation of 'demand' to continue

47

Institute of

Accuracy of Forecasts

Forecast error

 $-SFE = \sum_{i=1}^{t} (D_t - F_t)$

• Mean Absolute Deviation (MAD)

 $-MAD = \frac{1}{t} \times \sum_{i=1}^{t} |D_t - F_t|$

Mean Absolute Percentage error (MAPE)

$$-MAPE = \frac{1}{t} \times \sum_{i=1}^{t} \frac{|D_t - F_t|}{D_t} \times 100$$

Mean Squared error

$$-MSE = \frac{1}{t} \times \sum_{i=1}^{t} (D_t - F_t)^2$$

1/2/2019

Tracking Signal

- The tracking signal (TS) is a measure that indicates whether the forecast average is keeping pace with any genuine upward or downward changes in demand
- Depending on the number of MAD's selected, the TS can be used like a quality control chart indicating when the model is generating too much error in its forecasts

49

$$TS = \frac{RSFE}{MAD} = \frac{Running sum of forecast errors}{Mean absolute deviation}$$

Institute of