

227

Independent - Dependent Demand

Spares

Why inventories?

- Economies of Scale
- Supply and Demand Uncertainty
- Volume Discounts/Impending Price Rise
- Long Lead Times and Quick Response to Customer's Demand
- To maintain independence of operations
- To allow flexibility in production scheduling

Inventory

Inventory is injurious to your health!

Get Lean...Get healthy!

We want to turn our inventory faster than our people
 - A quote by James D. Sinegal
 - Co-founder, Costco

235

INVENTORY TURNS SHOULD ALWAYS BE

Inventory classification

- Classification by form
- Raw Materials (RM)
- Work-in-Process (WIP)
- Finished Goods (FG)
- Classification by Life cycle
- Perishable
- Non-perishable

Inventory classification by function

- Cyclic stock
- Ordering lot size/2
- Safety stock

- To protect against uncertainties
- Pipeline
- Scheduled receipts or open orders

Institute of

Cyclic, Pipeline and Safety Stocks

Cyclic inventory, pipeline inventory and safety stocks are critically linked to "how much" and "when" decisions in inventory planning

Institute of

239

Costs of Inventory

- Physical holding cost (out-of-pocket)
- Financial holding cost (opportunity cost)
- Holding (or carrying) costs
- Production change
- Product changeover
- Setup costs
- Low responsiveness
- to demand/market changes
- Shortage costs
- to supply/quality changes
- Managerial and clerical costs
- Ordering Costs
- Transportation costs

Inventory Policy parameters

- WHEN to order?
- HOW MUCH to order?
- In WHAT FORM? (RM, WIP or FG)
- WHERE TO DEPLOY in the supply chain?

Types of inventory models

Single Period Deterministic

- You have to make a decision on how much to inventory in every period
- You know how much the demand for the period is going to be
-What do you do?

Multi Period Deterministic

- Perpetual inventory system
- Demand for the product is known constant and uniform throughout the period
- Lead time (time from ordering to receipt) is constant
- Replenishment is instantaneous
- Price per unit of product is constant
- Inventory holding cost is based on average inventory
- Ordering or setup costs are constant
- All demands for the product will be satisfied (no back orders are allowed)
- How would the inventory level look like?

245

247

EOQ model

D : Demand per year
S : Setup or Order Cost
(Rs/Setup; Rs/Order)
$c=$ unit cost of item
$h=$ Inv holding cost rate
$H=h c$: Inventory holding cost
(Rs./year/unit)
Q : Order quantity

T : Reorder cycle

$$
T C\left(Q^{*}\right)=\sqrt{2 S D H}
$$

Inventory Planning Models

Mean of weekly demand	$: 200$
Standard deviation of weekly demand	$: \overline{40}$
Unit cost of the raw material	$: \overline{\text { Rs. } 300 /-}$
Ordering cost	$:$ Rs. 460/- per order
Carrying cost percentage	$: 20 \%$ per annum
Lead time for procurement	$: 2$ weeks
EOQ Model	$=200$
Weekly demand	$=52$
Number of weeks per year	$=10,400$
Annual demand, $D=200 * 52$	
Carrying cost, $C_{c}=$ Rs. 60.00 per unit per year	
Economic Order Quantity $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 * 460 * 10,400}{60}}=399.33 \approx 400$	
Time between orders $=\frac{400}{10400}=\frac{2}{52}=2$ weeks	

Practical issues with the EOQ model

- It may not be possible to

- Order exactly Q*
- Order as close as possible to Q*
- Estimate the parameters (D,S,H) accurately
- EOQ model is robust to small errors in these values
- Instantaneous replenishment
- Incorporate lead time using ROP level

- Price discounts

- Use modified procedure

Incorporating Lead time

Certain Demand

Price Discounts

- Why do suppliers give price discounts?
- Compute Q* values
- From lowest price to the highest
- Until valid Q* is obtained
- Compute TRC at this Q* and each price break above this Q*
- Choose the order quantity with least TC

The elephant in the room

Demand uncertainty!!!

258

If life were predictable it would cease to be life, and be without flavor.

Eleanor Roosevelt

Single period Stochastic Demand

- Examples?
- Newspapers
- Cakes
- Fashion products?

Demand characteristics

- Demand follows a normal distribution
- NORM(50,10)
- How much would you order?

Managing the average will make you an average manager!

A quote by

Understanding Service level

- What area of the demand distribution would you cover?
http://homepage.divms.uiowa.edu/~mbognar/applets/normal.html

Optimal Service level

Happiness is a mysterious thing, to be found somewhere between too little and too much

Newsvendor model

- Inventory decision under uncertainty
- The "too much/too little problem":
- Order too much and inventory is left over at the end of the season
- Order too little and sales are lost.

Notation

- Demand D is a random variable
- Cumulative distribution function $F(D)$
- Wholesale price W
- Selling price R
- Salvage value S (<W)
- How much should the retailer order?

"Too much" and "too little" costs

$$
W=3 \quad R=12 \quad S=1
$$

- $C_{o}=$ overage cost
- The cost of ordering one more unit than what you would have ordered had you known demand.
- Increase in profit you would have enjoyed had you ordered one unit lesser.
$-C_{o}=$ Cost - Salvage value $=W-S=2$
- $C_{u}=$ underage cost

- The cost of ordering one fewer unit than what you would have ordered had you known demand.
- Increase in profit you would have enjoyed had you ordered one unit more.
- $C_{u}=$ Price - Cost $=R-W=9$

Balancing the risks and benefits

- Risk: Ordering one more unit increases the chance of overage
- Expected loss on the $Q^{\text {th }}$ unit $=C_{o} \times F(Q)$, where $F(Q)=$ Prob\{Demand <= Q)
- Benefit: Ordering one more unit decreases the chance of underage:
- Expected benefit on the $Q^{\text {th }}$ unit $=C_{u} \times(1-F(Q))$

Expected profit maximizing order quantity

- To minimize the expected total cost of underage and overage, order Q units so that the expected marginal cost with the $Q^{t h}$ unit equals the expected marginal benefit with the $Q^{t h}$ unit:

$$
\underline{C_{o}} \times F(Q)=C_{u} \times(1-F(Q))
$$

- Rearrange terms in the above equation ->
- The ratio $C_{u} /\left(C_{o}+C_{u}\right)$ is called the critical ratio.

$$
\begin{aligned}
& F(Q)=\frac{C_{u}}{C_{0}+C_{u}} \\
& \text { ratio. }
\end{aligned}
$$

- In other terms, (R-W)/(R-S). \underline{R} and \underline{S} are determined by the market.
$R=12 \quad W=3$

What is the Optimal service level?

Let $C_{o}=$ Cost of over stocking per unit
$C_{u}=$ Cost of under stocking per unit
$Q=$ Number of units to be stocked
d = Single period demand
$P(d \leq Q) \quad=$ The probability of the single period demand being at most Q units

$$
P(d \leq Q) \leq \frac{C_{u}}{C_{u}+C_{o}}=\text { Service Level }
$$

Multi period Stochastic Demand

- Extending the idea to multiple periods

278

Back to the multi-period setting

Computing safety stock

Let the demand during lead time follow a Normal distribution Mean demand during lead-time $=\mu_{(L)}$ Standard deviation of demand during lead-time $={ }^{\sigma}{ }^{\sigma}(L)$ Desired service level $=(1-\alpha)$
The probability of a stock out $=\alpha$ Standard normal variate corresponding to an area of $(1-\alpha)$ covered on the left side of the normal curve $=Z_{\alpha}$

Safety stock (SS) is given by $\mathrm{SS}=Z_{\alpha} * \sigma_{(L)}$

Factors effecting safety stock

- Demand uncertainty (forecast uncertainty)
- Reducing demand uncertainty (better forecast) reduces safety stock required, reducing material cycle time
- Replenishment lead time
- Reducing replenishment lead time, improves forecast accuracy, reducing safety stock required (square root factor)
- Variability of supply lead time
- Reducing variability of supply, improves forecast accuracy, reducing safety stock required

Relationship between Service Level and Safety Stock

Continuous Review (Q) System

284

Continuous review policy

L: Lead time
D: Average demand per unit time
σ : Standard deviation of demand per unit time
σ_{I} : Standard deviation of demand during lead time
ss: Safety stock
k : Safety factor
r : Reorder point
AI : Average inventory
AT: Material Cycle time

$$
\begin{aligned}
& \sigma_{I}=\sigma \sqrt{L} \\
& s s=k \times \sigma_{I} \\
& r=D \times L+s s \\
& A I=\frac{Q}{2}+s s \\
& A T=\frac{A I}{D}
\end{aligned}
$$

Periodic Review (P) System

Periodic Review policy

L : Lead time
T : Reorder interval
D : Average demand per unit time
σ : Standard deviation of demand per unit time
σ_{I+T} : Standard deviation of demand during $\mathrm{L}+\mathrm{T}$ periods
$\mathrm{F}(k)$: Cycle service level
ss: Safety stock
k : Safety factor
S : Order up to quantity
$A I$: Average inventory
$A T$: Material Cycle time
$\sigma_{I}+R=\sigma \sqrt{L+T}$
$S S=k \times \sigma_{I}+T$
$S=D \times(L+T)+S S$
$A I=\frac{D \times T}{2}+s s$
$A T=\frac{A I}{D}$

Periodic \& Continuous Review Systems

Criterion	Continuous Review (Q) System	Periodic Review (P) System
How much to order	Fixed order qty: Q	$\mathrm{S}=\mu_{(\mathrm{L}+\mathrm{R})}+\mathrm{Z}_{\alpha} \times \sigma_{(L+T)}$ $\mathrm{Q}_{R}=\mathrm{S}-\mathrm{I}_{\mathrm{T}}$
When to order	$\mathrm{ROP}=\mu_{(\mathrm{L})}+\mathrm{Z}_{\alpha} \times \sigma_{(L)}$	Every T periods
Safety stock	$\mathrm{SS}=\mathrm{Z}_{\mathrm{a}} \times \sigma_{(L)}$	$\mathrm{SS}=\mathrm{Z}_{\alpha} \times \sigma_{(L+T)}$
Salient aspects	- Implemented using two bin system - Suited for medium and low value items	- More safety stock - More responsive to demand - Ease of implementation

Institute of

Hybrid Inventory Policies

- (s, S) policy
- Optional replenishment system
- Periodic review with a order upto level
- Ensures minimum ordering level
- Eliminates continuous review
- Base stock system
- Order as much as you sell
- Base stock level = expected demand during lead time + safety stock
- Usually orders are accumulated periodically

