

62

Example 5.1—Determining Capacity Requirements

- Stewart Company produces two flavors of salad dressing – Paul's and Newman's
- Each is available in bottles and single-serving bags
- Have three machines that can package 150,000 bottles each year
 - Each machine requires two operators
- Have five machines that can package 250,000 plastic bags per year
 - Each machine requires three operators
- What are the capacity and labor requirements for the next five years?

5-63

Step 1: Use Forecast to Predict Sales for Individual Products

	1	2	3	4	5
Paul's					
Bottles (000s)	60	100	150	200	250
Plastic bags (000s)	100	200	300	400	500
Newman's					
Bottles (000s)	75	85	95	97	98
Plastic bags (000s)	200	400	600	650	680

64

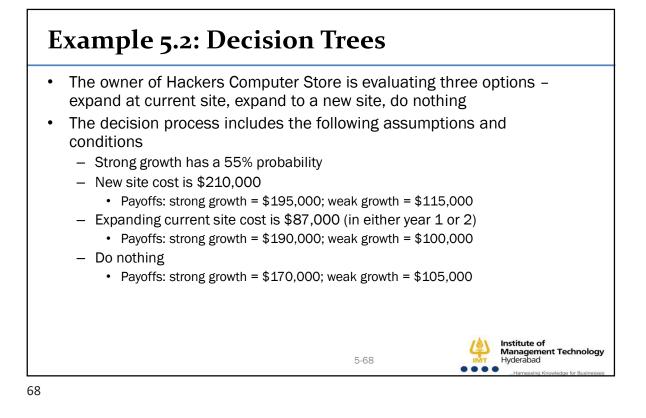
Step 2: Calculate Equipment and Labor Requirements **Bottling Operation Bagging Operation** Capacity: 450,000 Capacity: 1,250,000 - 150,000 x 3 - 250,000 x 5 **Operators: 6 Operators: 15** - 3x5 - 2x3 Year 1 Year 1 - Capacity utilization = $\frac{300}{1,250}$ = Capacity utilization $=\frac{135}{450}=0.3$ 0.24 *Machine requirement* = $0.3 \times$ *Machine requirement* = $0.24 \times$ 3 = 0.95 = 1.2*Labor requirement* = $0.9 \times 2 =$

Labor requirement = $1.3 \times 3 =$ 3.6

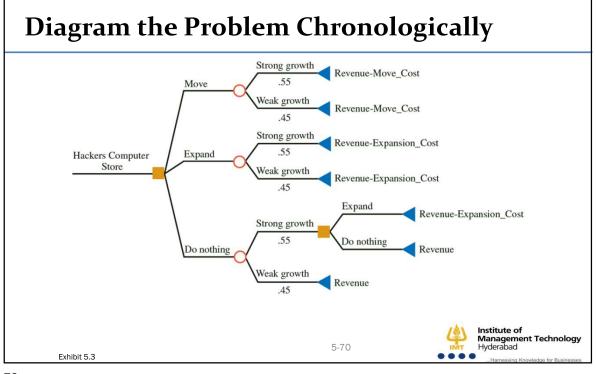
5-65

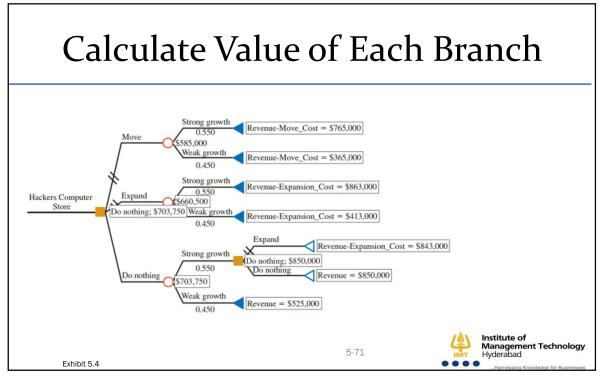
Institute of

Management Technology Hyderabad


Step 3: Project Equipment and Labor Availabilities over the Planning Horizon

BOTTLE OPERATION		2	3	4	5
Percentage capacity utilized	30	41	54.4	66	77.3
Machine requirement	0.9	1.23	1.63	1.98	2.32
_abor requirement	1.8	2.46	3.26	3.96	4.64
PLASTIC BAG OPERATION					
Percentage capacity utilized	24	48	72	84	94
Machine requirement	1.2	2.4	3.6	4.2	4.7
_abor requirement	3.6	7.2	10.8	12.6	14.1

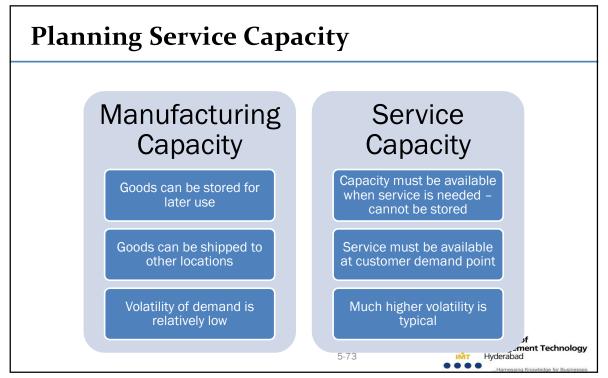

66

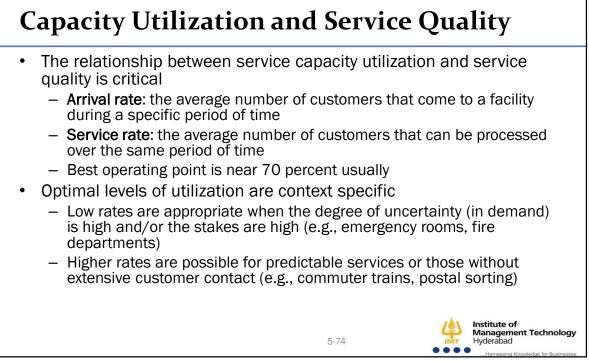

Using Decision Trees to Evaluate Capacity Alternatives

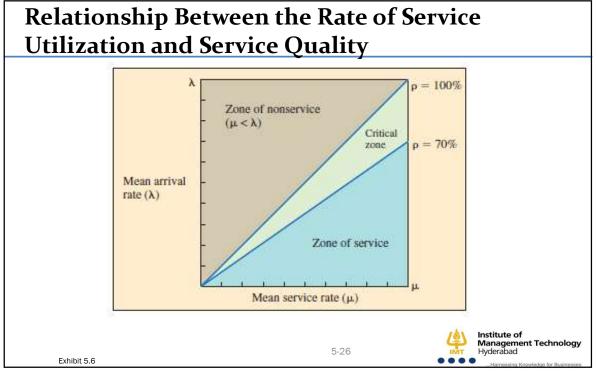
- A decision tree is a schematic model of the sequence of steps in a problem – including the conditions and consequences of each step
- Decision trees help analysts understand the problem and assist in identifying the best solution
- Decision tree components include the following:
 - Decision nodes represented with squares
 - Chance nodes represented with circles
 - Paths links between nodes
- Work from the end of the tree backwards to the start of the tree
- Calculate expected values at each step



alternative						
Alternative	Revenue	Cost	VALUE			
Move to new location, strong growth	\$195,000 × 5 yrs	\$210,000	\$765,000			
Move to new location, weak growth	\$115,000 × 5 yrs	\$210,000	\$365,000			
Expand store, strong growth	\$190,000 × 5 yrs	\$87,000	\$863,000			
Expand store, weak growth	\$100,000 × 5 yrs	\$87,000	\$413,000			
Do nothing now, strong growth, expand next year	\$170,000 × 1 yr + \$190,000 × 4 yrs	\$87,000	\$843,000			
Do nothing now, strong growth, do not expand next year	\$170,000 × 5 yrs	\$o	\$850,000			
Do nothing now, weak growth	\$105,000 × 5 yrs	\$o	\$525,000			
	5-69	4	Institute o Managem Hyderabad			






Decision Tree Analysis with Net Present Value Calculations

72

