

	TASK TIME		TASKS THAT
Task	(in Seconds)	Description	MUST PRECEDE
А	45	Position rear axle support and hand fasten four screws to nuts.	-
В	11	Insert rear axle.	А
С	9	Tighten rear axle support screws to nuts.	В
D	50	Position front axle assembly and hand fasten with four screws to nuts.	-
Е	15	Tighten front axle assembly screws.	D
F	12	Position rear wheel #1 and fasten hubcap.	С
G	12	Position rear wheel #2 and fasten hubcap.	С
Н	12	Position front wheel #1 and fasten hubcap.	E
1	12	Position front wheel #2 and fasten hubcap.	E
J	8	Position wagon handle shaft on front axle assembly and hand fasten bolt and nut.	F, G, H, I
К	_9	Tighten bolt and nut.	J
	195		

Institute of

Management Technology Hyderabad

Line balancing heuristics Longest task operation time Most following tasks Ranked position weight

- Sum of times for each following task is longest
- Shortest task time
- Least number of following tasks

114

Task Splitting Split the task Share the task Use parallel workstations Use a more skilled worker Work overtime Redesign

Comparing the two systems

Attribute	Old Layout	New Layout
Capacity (ideal)	150	180
Variability	High	Low
Flexibility to change in process configuration	No	3 stations could be
		added
Manpower	54	54
Material handling	High	Low
Flexibility to change in demand	Low	High
Teamwork and coordination	16 member teams	5 member teams
Operator movement	High	Low
Effect of absenteeism	High	Low
Shop floor Inventory	50 units inventory	Zero
No. of Testing Bays required	8	11

Design of GT Layout The objective is one of sub-dividing an universe of machines and components into sub-groups Each sub-group of components form a part family and is endowed with a corresponding sub-group of machines known as machine groups Each sub-group is referred to as a cell GT layout design is done with a systematic analysis of a machine-٠ component incident matrix Number of methods available for identifying sub-groups Production Flow Analysis (PFA) _ Clustering techniques Matrix manipulation methods Graph theory — - Mathematical programming methods Institute of Management Technology Hyderabad

Institute of

Management Technology Hyderabad

Process layout example

- Arrange six departments in a factory to minimize the material handling costs. Each department is 20 X 20 feet and the building is 60 feet long and 40 feet wide
- Transportation costs are \$1 to move a load between adjacent work centers and \$1 extra for each work center in between.
 - 1. Construct a "from-to matrix"
 - 2. Determine the space requirements
 - 3. Develop an initial schematic diagram
 - 4. Determine the cost of this layout
 - 5. Prepare a detailed plan

130

Institute of

...

Management Technology Hyderabad

Design of Process Layout Quantitative Method

- C_{ij} = Cost per unit of transporting a unit distance from department "i" to department "j"
- F_{ii} = Inter-departmental flow between department "i" and department "j"
- D_{ii} = Distance between department "i" and department "j"
- *n* = *N*umber of departments to be laid out
- The total cost of the plan is given by: $TC = \sum_{i=1}^{n} \sum_{j=1}^{n} F_{ij} D_{ij} C_{ij}$
- One can model the above as a mathematical programming problem with the objective function of minimising the total cost of the plan

ut Design - Performance Measures				
	Desis for more than the			
Performance Measure	Basis for measurement			
Distance travelled by jobs in the shop floor	Kg - Metres of job movement for each product			
Space utilization index	Minimum space required to actual space utilised			
Material Handling costs	Rupees per month			
Lead time of the processes	Hours per average product			
Investment in work-in-progress	Rupees per month			
Inter-departmental moves	Number and quantum of inter-departmental moves			
Utilisation of the resources	Percent to total capacity			
Ease of production control	Number of job cards and control documents generated; Size of the progress chasing staff			
Number of ownership changes	Number of times the responsibility for the job changes hands			
	Manage Maraba			