Supply Planning and Inventory Management

Institute of Management Technology
Hyderabad

266

Inventory Management

- Involves planning, coordinating, and controlling
- Acquisition, storage, handling, movement, distribution, and possible sale of raw materials
- Component parts and subassemblies
- Supplies and tools
- Replacement parts
- Other assets that are needed to meet customer wants and needs

Types of Inventory

- Raw materials, component parts, subassemblies, and supplies
- Inputs to manufacturing and service-delivery processes
- Work-in-process (WIP) inventory
- Partially finished products in various stages of completion that are awaiting further processing
- Finished-goods inventory
- Completed products ready for distribution or sale to customers
- Safety stock inventory
- Additional amount of inventory kept over and above the average amount required to meet demand

Why inventories?

- Economies of Scale
- Supply and Demand Uncertainty
- Volume Discounts/Impending Price Rise
- Long Lead Times and Quick Response to Customer's Demand
- To maintain independence of operations
- To allow flexibility in production scheduling Hyderabad

270

Inventory Characteristics, Part 1

- Each item is assigned a unique identifier, called a stock-keeping unit (SKU)
- Stock-keeping unit (SKU): Single item or asset stored at a particular location
- Nature of demand
- Independent demand
- Demand for an SKU that is unrelated to the demand for other SKUs and needs to be forecasted

Inventory Characteristics, Part 2

- Dependent demand
- Directly related to the demand of other SKUs and can be calculated without needing to be forecasted
- Static demand is stable in nature
- Dynamic demand varies over time
- Storage planning approaches
- Analyzing inventory for single or multiple periods

Inventory Characteristics, Part 3

- Lead time
- Time between placement of an order and its receipt
- Stockouts
- Inability to satisfy the demand for an item
- Backorder: Occurs when a customer is willing to wait for an item
- Lost sale: Occurs when the customer is unwilling to wait and purchases the item elsewhere

Role of Inventory in the Value Chain

EXHIIIIT 12.1 Role of Inventory in the Value Chain
Raw materials,
components, and

supplies \quad Work-in-process \quad\begin{tabular}{l}
Finished

goods

\quad

Repair and

replacement

parts
\end{tabular}

inology

Inventory

Inventory is injurious to your health!

Get Lean...Get healthy!

277

We want to turn our inventory faster than our people
 - A quote by James D. Sinegal
 - Co-founder, Costco

Inventory Turns

"It was someone from corporate's idea to improve our inventory turns."

$$
\begin{aligned}
I T_{\text {sit }} & =\frac{C G S_{\text {sit }}}{\frac{1}{4} \sum_{q=1}^{4} I n v_{\text {sitq }}} \\
\begin{array}{c}
\text { Inventory } \\
\text { Turns }
\end{array} & =\frac{\text { Cost of Goods Sold }}{\text { Average Inventory }}
\end{aligned}
$$

Should be as high/Iow as possible

INVENTORY TURNS SHOULD ALWAYS BE

Inventory classification

- Classification by form
- Raw Materials (RM)
- Work-in-Process (WIP)
- Finished Goods (FG)
- Classification by Life cycle
- Perishable
- Non-perishable

Inventory classification by function

- Cyclic stock
- Ordering lot size/2
- Safety stock

- To protect against uncertainties
- Pipeline
- Scheduled receipts or open orders

Cyclic, Pipeline and Safety Stocks

Cyclic inventory, pipeline inventory and safety stocks are critically linked to "how much" and "when" decisions in inventory planning

285

Costs of Inventory

- Physical holding cost (out-of-pocket)
- Financial holding cost (opportunity cost)
- Holding (or carrying) costs
- Production change
- Product changeover
- Setup costs
- Low responsiveness
- to demand/market changes
- to supply/quality changes
- Managerial and clerical costs
- Ordering Costs
- Transportation costs

Inventory Policy parameters

- WHEN to order?
- HOW MUCH to order?
- In WHAT FORM? (RM, WIP or FG)
- WHERE TO DEPLOY in the supply chain?

Types of inventory models

Multi Period Deterministic

- Perpetual inventory system
- Demand for the product is known constant and uniform throughout the period
- Lead time (time from ordering to receipt) is constant
- Replenishment is instantaneous
- Price per unit of product is constant
- Inventory holding cost is based on average inventory
- Ordering or setup costs are constant
- All demands for the product will be satisfied (no back orders are allowed)
- How would the inventory level look like?

Tradeoffs: Inventory Carrying versus Annual Ordering Coats

$$
T C(Q)=\frac{D}{Q} S+\frac{Q}{2} H
$$

EOQ model

D : Demand per year
S : Setup or Order Cost
(Rs/Setup; Rs/Order)
$c=$ unit cost of item
$h=$ Inv holding cost rate
$H=h c$: Inventory holding cost
(Rs./year/unit)
Q : Order quantity

$$
Q^{*}=\sqrt{\frac{2 D S}{H}}
$$

T : Reorder cycle

$$
T C\left(Q^{*}\right)=\sqrt{2 S D H}
$$

Inventory Planning Models

Mean of weekly demand
Unit cost of the raw material Ordering cost
Carrying cost percentage
: 200
: Rs. 300/-
: Rs. 460/- per order
: 20\% per annum

EOQ Model

Weekly demand
$=200$
Number of weeks per year
$=52$
Annual demand, $\mathrm{D}=200 * 52$
$=10,400$
Carrying cost, $C_{c}=$ Rs. 60.00 per unit per year
Economic Order Quantity $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 * 460 * 10,400}{60}}=399.33 \approx 400$
Time between orders $=\frac{400}{10400}=\frac{2}{52}=2$ weeks Management Technology Hyderabad

Practical issues with the EOQ model

- It may not be possible to
- Order exactly Q*
- Order as close as possible to Q*
- Estimate the parameters (D,S,H) accurately
- EOQ model is robust to small errors in these values
- Instantaneous replenishment
- Incorporate lead time using ROP level
- Price discounts
- Use modified procedure

Certain Demand

298

Price Discounts

-Why do suppliers give price discounts?

- Compute Q* values
- From lowest price to the highest
- Until valid Q* is obtained
- Compute TRC at this Q^{*} and each price break above this Q*
- Choose the order quantity with least TC

The elephant in the room

Demand uncertainty!!!

1 THOLGHT I WAS
INTERESTED IN UNCERTAINTY
BUT NOW I'M NOT SO SURE

Who's the biggest villain in Operations?

If life were predictable it would cease to be life, and be without flavor.

Eleanor Roosevelt

Single period Stochastic Demand

- Examples?
- Newspapers
- Cakes
- Fashion products?

Demand characteristics

- Demand follows a normal distribution - NORM(50,10)
- How much would you order?

Managing the average will make you an average manager!

 A quote by

Understanding Service level

- What area of the demand distribution would you cover?
http://homepage.divms.uiowa.edu/~mbognar/applets/normal.html

Optimal Service level

Happiness is a mysterious thing, to be found somewhere between too little and too much

312

Newsvendor model

- Inventory decision under uncertainty
- The "too much/too little problem":
- Order too much and inventory is left over at the end of the season
- Order too little and sales are lost.

Notation

- Demand D is a random variable
- Cumulative distribution function F(D)
- Wholesale price W
- Selling price R
- Salvage value S (<W)
- How much should the retailer order?

Institute of

Management Technology Hyderabad

314

"Too much" and "too little" costs

- $C_{o}=$ overage cost
- The cost of ordering one more unit than what you would have ordered had you known demand.
- Increase in profit you would have enjoyed had you ordered one unit lesser.
$-C_{0}=$ Cost - Salvage value $=W-S=$
- $C_{u}=$ underage cost
- The cost of ordering one fewer unit than what you would have ordered had you known demand.
- Increase in profit you would have enjoyed had you ordered one unit more.
- $C_{u}=$ Price - Cost $=R-W=$

Expected profit maximizing order quantity

- To minimize the expected total cost of underage and overage, order Q units so that the expected marginal cost with the $Q^{\text {th }}$ unit equals the expected marginal benefit with the $Q^{\text {th }}$ unit:

$$
C_{o} \times F(Q)=C_{u} \times(1-F(Q))
$$

- Rearrange terms in the above equation ->

$$
F(Q)=\frac{C_{u}}{C_{o}+C_{u}}
$$

- The ratio $C_{u} /\left(C_{o}+C_{u}\right)$ is called the critical ratio.
- In other terms, (R-W)/(R-S). R and S are determined by the market.

What is the Optimal service level?

Let $C_{o}=$ Cost of over stocking per unit
$C_{u}=$ Cost of under stocking per unit
$Q=$ Number of units to be stocked
$d=$ Single period demand
$P(d \leq Q)=$ The probability of the single period demand being at most Q units

$$
P(d \leq Q) \leq \frac{C_{u}}{C_{u}+C_{o}}=\text { Service Level }
$$

Selective Control of Inventories

- ABC Classification (on the basis of consumption value)
- XYZ Classification (on the basis of unit cost of the item)
- High Unit cost (X Class item)
- Medium Unit cost (Y Class item)
- Low unit cost (Z Class item)
- FSN Classification (on the basis of movement of inventory)
- Fast Moving
- Slow Moving
- Non-moving
- VED Classification (on the basis of criticality of items)
- Vital
- Essential
- Desirable
- On the basis of sources of supply
- Imported
- Indigenous (National Suppliers)
- Indigenous (Local Suppliers)

Institute of
 Management Technology Hyderabad

339

ABC Classification

ABC Inventory Analysis

- Categorizes SKUs into groups according to their total annual dollar usage
- Total dollar usage = Item usage (volume) x Item's dollar value (unit cost)
- A items - Account for a large dollar value but a relatively small percentage of total items
- C items - Account for a small dollar value but a large percentage of total items
- B items - Items between A and C

Inventory Management in Practice

- Problem of Shrinkage
- Stock mismatch
- Inventory Management software
- RFID technology
- loT tech

"You've got oink oinks here, cluck clucks there, and the moo moos are everywhere! You have got to get
THANK YOU

