

Trend Effects in Exponential Smoothing

- An trend in data causes the exponential forecast to always lag the actual data
- Can be corrected somewhat by adding in a trend adjustment
- To correct the trend, we need two smoothing constants
 - Smoothing constant alpha (α)
 - Trend smoothing constant delta (δ)

Institute of

Management Technology Hyderabad

Trend Effects Equations

 $FIT_{t} = F_{t} + T_{t}$ $F_{t} = FIT_{t-1} + \alpha (A_{t-1} - FIT_{t-1})$ $T_{t} = T_{t-1} + \delta (F_{t} - FIT_{t-1})$ $F_{t} = The exponentially smoothed forecast for period t$ $T_{t} = The exponentially smoothed trend for period t$ $FIT_{t} = The forecast including trend for period t$ $FIT_{t-1} = The forecast including trend made for the prior period$ $A_{t-1} = The actual demand for the prior period$ $\alpha = \text{Smoothing constant}$ $\delta = \text{Smoothing constant}$

Estimating Trend Method of Least Squares Treat the time periods as independent variable and the actual demand as dependant variable. Linear regression of the form Y = a + bX could be constructed to predict the demand Y for any value of X = Time periods X Y = Actual demand during period X_i = Intercept (at period 0) = Slope of the line а b = Number of periods n The coefficients of the regression equation are as follows: $b = \frac{\sum_{i} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i} X_{i}^{2} - n \overline{X}^{2}} \qquad a = \overline{Y} - b \overline{X} \qquad \overline{X} = \frac{\sum X}{n} \qquad \overline{Y} = \frac{\sum Y}{n}$ 57

....

Institute of Management Technology Hyderabad

Institute of Management Technology Hyderabad

When there is seasonality

- Need to de-seasonalize data before using any standard forecasting techniques
 - Use average demand for entire series
 - Use average demand for same period across seasons
 - Use moving average based on length of season

59