

Typical executive staff meeting

President: This shortage situation is terrible. When will we ever get our act together? Whenever business is good, we run out of product and our customer service is lousy.

VP Operations: I'll tell you when. When we start to get some decent forecasts from the Sales Department...

VP Sales (interrupting) : Wait a minute. We forecasted this upturn.

VP Operations: ... in time to do something about it. Yeah, we got the revised forecast...four days after the start of the month. By then it was too late

VP Sales: I could have told you months ago. All you had to do was ask!

VP Finance: I'd like to be in on those conversations. We've been burned more than once by building inventories for a business upturn that doesn't happen. Then we get stuck with tons of inventory and run out of cash!

Institute of

Aggregate Operations Planning

- Amount of resources to be committed in each period
- Rate at which goods and services need to be produced in each period
- Inventory to be carried forward from one period to the next
- Is in terms of standardized aggregate units

3

Institute of

The Aggregate Operations Plan Main purpose: Specify the optimal combination of - Production rate (units completed per unit of time) - Workforce Level (number of workers) Inventory on Hand (inventory carried from previous) period) Product group or broad category (Aggregation) This planning is done over an intermediate range planning period of 3 to 18 months Institute of Management Technology Hyderabad 1/21/2019 81

Problem statement

Given the demand forecast F_{t} for each period t in the planning horizon that extends over T periods, determine the production level P_{t} , inventory level It and workforce level W_t for periods $t = 1, 2, 3, \dots T$ that minimize the relevant costs over the planning horizon.

Institute of

Why do you need an Aggregate Planning

- Demand Fluctuations
- Capacity Fluctuations
- Difficulty level of altering operation rates
- Benefits of multi-period planning

1/21/2019	85	Institute of Management Technology Hyderabad

Managing Demand

- Reservation systems
- Influencing demand
 - Promoting off peak demand
 - Backordering
 - Counter seasonal product or service mixings
- Overbooking

Institute of Management Technology Hyderabad

Managing Supply		
 Inventory based adjustments Build inventory during lean periods Backorder/Stock out/backlog Capacity Adjustment Hiring/laying off workers Varying shifts Varying working hours Capacity augmentation alternatives Sub-contract Add new capacity De-bottleneck 		
1/21/2019	87	Institute of Management Technology Hyderabad

Other ways of managing supply Increasing customer participation Creating adjustable capacity Sharing capacity Cross training employees Using part time employees

Level strategy

- Daily production is uniform
- Use inventory or idle time as buffer
- Stable production leads to better quality and productivity

Mixed Strategy

- A mixed strategy may be the best way to achieve minimum costs
- There are many possible mixed strategies
- Finding the optimal plan is not always possible

	Lauran		DEMAND AND WORKING DAYS									
	JANUARY	FEBRUARY	March	April	Мау	JUNE	TOTAL					
Demand forecast	1,800	1,500	1,100	900	1,100	1,600	8,000					
Number of working days	22	19	21	21	22	20	125					
		C	OSTS									
Materials		\$	100.00/unit	t								
Inventory holding cost			\$1.50/unit	t/month								
Marginal cost of stockout	ockout \$5.00/unit/month											
Marginal cost of subcontraction	ontracting \$20.00/unit (\$120 subcontracting cost less \$100 material savings)											
Hiring and training cost		\$	200.00/wor	ker								
Layoff cost		\$	250.00/wor	ker								
Labor hours required			5∕unit	t								
Straight-time cost (first eight h	nours each (day)	\$4.00/hou	IL								
Overtime cost (time and a hal	f)		\$6.00/hou	IL								
		Ir	VENTORY									
Beginning inventory		4	00 units									
Safety stock		2	5% of mont	h demano	1							

Aggregate Planning – JC Company

	JANUARY	February	MARCH	April	May	JUNE
Beginning inventory	400	450	375	275	225	275
Demand forecast	1,800	1,500	1,100	000	1,100	1,600
Safety stock (.25 $ imes$ Demand forecast)	450	375	275	January	z endir	าต
Production requirement (Demand forecast + Safety stock – Beginning inventory)	1,850	1,425	1,000	inventory becomes February beginning		
Ending inventory (Beginning inventory + Production			:	invento	ry.	0
requirement – Demand forecast)	450	375	275	225	275	400

Plan 1: Exact Production; Vary Workforce

		JANUARY	February	MARCH	April	May	JUNE	TOTAL	
Production requiremen	t (from Exhibit 19.3)	1,850	1,425	1,000	850	1,150	1,725		
Production hours required (Production requirement \times 5 hr./unit)		9,250	7,125	5,000	4.250	5,750	Produ	ction	
Hours per month per w days × 8 hr/day)	n orker (Working	176	19	168	168	176	exactly requir	y matcl ements	hes s.
Workers required (Proc required/Hours per	luction hours month per worker)	53	47	30	26	33	54		
New workers hired (as workforce equal to f	suming opening irst month's vorkers)	1	0	0	0	7	21		
Hiring cost	loikeis/	\$0	\$0	\$0	\$0	\$1,400	\$4,200	\$5,600	
Workers lai Worke	ers are	0	6	17	4	0	0		
Layoff cost added	or reduced	\$0	\$1,500	\$4,250	\$1,000	\$0	\$0	\$6,750	
Straight-tim as nee	eded.	\$37,000	\$28,500	\$20,000	\$17,000	\$23,000	\$34,500	\$160,000	
							Total cost	\$172,350	

'lan 2: Constant Workforce;									
ary Inventory and Stockout									
		PRODUCTION PLAN 2: C	onstant W	ORKFORCE; V	/ary Inven	TORY AND	Stockout		
			JANUARY	February	March	April	May	June	Total
	Beginning invent	ory	400	8	-276	-32	412	720	
Number of	Working days pe	r month available (Working days hr/day × 40 workers)*	22 7.040	19 6.080	21 6.720	21 6.720	22 7.040	20 6.400	
set to meet	average	(Production hours	1,010	0,000	0,120	0,720	1,010	0,100	
demand ov	er the time	unit)	1,408	1,216	1,344	1,344	1,408	1,280	
horizon. Th	nis then	(from Exhibit 19.3)	1,800	1,500	1,100	900	1,100	1,600	
determines	3	(Beginning inventory + tion - Demand forecast)	8	-276	_32	/12	720	400	
production	rate and	hits short \times \$5)	\$0	\$1,380	\$160	\$0	\$0	-00	\$1.540
inventory/k	backorders.	Exhibit 19.3)	450	375	275	225	275	400	÷.,
	Units excess (En stock) only if	ding inventory – Safety	0	0	0	187	445	0	
	Inventory cost (U	nits excess \times \$1.50)	\$0	\$0	\$0	\$281	\$668	\$0	\$948
	Straight-time cos	t (Production hours							
	available × \$	4)	\$28,160	\$24,320	\$26,880	\$26,880	\$28,160	\$25,600	\$160,000
								Total cost	\$162 / 99

3: Constant Lo	ow V	Vor	kfo	rce	; Su	ıbco	onti	
Production P	lan 3: Const	TANT LOW W	Wo: to r den	Workforce sized to meet minimum demand (April).				
	JANUARY	February	March	April	Мау	JUNE	Total	
roduction requirement (from Exhibit 19.3) /orking days per month	1,850 22	1,425 19	1,000 21	850 21	1,150 22	1,725 20		
Production hours available (Working days × 8 hr./day × 25 workers)*	4,400	3,800	4,200	4,200	4,400	4,000		
available/5 hr. per unit)	880	760	840	840	880	800		
Units subcontracted (Production requirement – Actual production)	970	665	160	10	270	925		
Subcontracting cost (Units subcontracted \times \$20)	\$19 400	\$13,300	\$3,200	\$200	\$5,400	\$18,500	\$60,000	
Straight-time cost (Production hours available × \$4)	\$17,600	\$15,200	\$16,800	\$16,800	\$17,600	\$16,000 Total cost	\$100,000 \$160,000	
Minimum production requirement. In this example, Ap	ril is minimum	of 850 units. N	Number of w	orkers requir	ed for April is	s (850 × 5)/(2	?1 × 8) = 25.	
Demand ove minimum is subcontracti	r met wit ng.	h					MT Hy	

4: Co1	nstant Wor	kfa	orc	e; (Ov	er	tin	ne
-								
	Production	n Plan 4: C	onstant Wo	RKFORCE; C	VERTIME			
		JANUARY	February	March	April	May	JUNE	Total
	Beginning inventory	400	0	0	177	554	792	
Demand in	Working days per month	22	19	21	21	22	20	
the first	Production nours available (Working days × 8 hr./day × 38 workers)*	6,688	5,776	6,384	6,384	6,688	6,080	
tire months	Regular shift production (Production hours							
two months	available/5 hr./unit)	1,338	1,155	1,277	1,277	1,338	1,216	
is high, so overtime is used to	Demand forecast (from Exhibit 19.3) Units available before overtime (Beginning Inventory + Regular shift production – Demand forecast). This number has been rejuded to the pagest integer.	1,800	1,500	1,100	900	702	1,600	
compensate	Units overtime	-02	375	0	0	192	400	
. Then,	Overtime cost (Units overtime × 5 hr./unit × \$6/hr.)	\$1,860	\$10,350	\$0	\$0	\$0	\$0	\$12,210
inventory	Safety stock (from Exhibit 19.3)	450	375	275	225	275	400	
can be built	Units excess (Units available before overtime – Safety stock) only if positive amount	0	0	0	329	517	8	
domond in	Inventory cost (Units excessive \times \$1.50)	\$0	\$0	\$0	\$494	\$776	\$12	\$1,281
June.	Straight-time cost (Production hours available × \$4)	\$26,752	\$23,104	\$25,536	\$25,536	\$26,752	\$24,320 Total cost	\$152,000 \$165,491
	*Workers determined by trial and error. See text for ex	planation.						Mana Hyder

Plan Comparison

Comparison of Four Plans

Costs	Plan 1: Exact Production; Vary Workforce	Plan 2: Constant Workforce; Vary Inventory and Stockout	Plan 3: Constant Low Workforce; Subcontract	Plan 4: Constant Workforce; Overtime		
Hiring	\$ 5,600	\$ 0	\$ 0	\$ 0		
Layoff	6,750	0	0	0		
Excess inventory	0	948	0	1,281		
Shortage	0	1,540	0	0		
Subcontract	0	0	60,000	0		
Overtime	0	0	0	12,210		
Straight time	160,000	160,000	100,000	152,000		
	\$172,350	\$162,488	\$160,000	\$165,491		

Business Planning Exerci	rise	
 Business plan is strategic in nature and questions: Should we meet the projected demand projected demand? What are the implications of this decisiscenario and the firm's standing in th How is this likely to affect the operating functional areas of the business such What resources should we commit to the planning horizon? Aggregate production planning seeks operational decisions 	and addresses the followind entirely or a portion of the sision on the overall compete the market? ing system and planning in h as marketing and finance o meet the chosen demand s to translate business plan	ng itive other ? during s to
1/21/2019	102 Institut Managu Hyderat	e of ement Technology ad sing Knowledge for Businesses

Yield Management

- Yield management: the process of allocating the right type of capacity to the right type of customer at the right price and time to maximize revenue or yield
 - Can be a powerful approach to making demand more predictable
- Has existed as long as there has been limited capacity for serving customers
- Its widespread scientific application began with American Airlines' computerized reservation system (SABRE)

Yield Management Most Effective When...

- 1. Demand can be segmented by customer
- 2. Fixed costs are high and variable costs are low
- 3. Inventory is perishable
- 4. Product can be sold in advance
- 5. Demand is highly variable

Institute of Management Technology Hyderabad

Institute of

Yield Management at a Hotel

- Hotels offer one set of rates during the week and another set during the weekend
- The variable costs associated with a room are low in comparison to the cost of adding rooms to the property
- Available rooms cannot be transferred from night to night
- Blocks of rooms can be sold to conventions or tours
- Potential guests may cut short their stay or not show up at all

Operating Yield Management Systems

- Pricing structures must appear logical to the customer and justify the different prices
- Must handle variability in arrival or starting times, duration, and time between customers
- Must be able to handle the service process
- Must train employees to work in an environment where overbooking and price changes are standard occurrences that directly impact the customer
- The essence of yield management is the ability to manage demand

Institute of

