Institute of

Management Technology Hyderabad

Institute of Management Technology Hyderabad

Operations & Supply Planning PGDM 2018-20

Inventory Management

Vinay Kumar Kalakbandi Assistant Professor Operations Management

Why inventories?

- Economies of Scale
- Supply and Demand Uncertainty
- Volume Discounts/Impending Price Rise
- Long Lead Times and Quick Response to Customer's Demand
- To maintain independence of operations
- To allow flexibility in production scheduling

2/4/2019

110

Inventory classificati	ion			
 Classification by form]			
– Raw Materials (RM)				
 – Work-in-Process (WIP))			
 – Finished Goods (FG) 				
 Classification by Life cycle 				
– Perishable				
– Non-perishable				
2/4/2019	115	Institute of Management Technology Hyderabad		

Costs of Inventory							
 Physical holding cost (out-of-pocket) Financial holding cost (opportunity cost) 	•	Holding (or carrying) costs					
Transportation cost							
Ordering costs	•	Fixed costs					
 Low responsiveness to demand/market changes to supply/quality changes 	•	Shortage costs					
Obsolescence	•	Inventory writedown					
2/4/2019 119		Institute of Management Technology Hyderabad					

Inventory Policy parameters

- WHEN to order?
- HOW MUCH to order?
- In WHAT FORM? (*RM, WIP or FG*)
- WHERE TO DEPLOY in the supply chain?

2/4/2019

120

Single Period Deterministic You have to make a decision on how much to inventory in every period You know how much the demand for the period is going to be What do you do?

Multi Period Deterministic

- Perpetual inventory system
- Demand for the product is known constant and uniform throughout the period
- Lead time (time from ordering to receipt) is constant
- · Replenishment is instantaneous
- Price per unit of product is constant
- Inventory holding cost is based on average inventory
- · Ordering or setup costs are constant
- All demands for the product will be satisfied (no back orders are allowed)
- · How would the inventory level look like?

2/4/2019	123	4	Institute of Management Technology Hyderabad
			Harnessing Knowledge for Businesses

Institute of

Management Technology Hyderabad

Price Discounts

- Why do suppliers give price discounts?
- Compute Q* values
 - From lowest price to the highest
 - Until valid Q* is obtained
- Compute TRC at this Q* and each price break above this Q*

132

• Choose the order quantity with least TC

2/4/2019

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><page-footer><page-footer><page-footer>

Newsvendor model Inventory decision under uncertainty The "too much/too little problem": Order too much and inventory is left over at the end of the season Order too little and sales are lost.

Notation

- Demand **D** is a random variable
 - Cumulative distribution function F(D)
- Wholesale price W
- Selling price R
- Salvage value S (<W)
- How much should the retailer order?

Balancing the risks and benefits

- Risk : Ordering one more unit increases the chance of overage
 - Expected loss on the Qth unit = C_o x F(Q), where F(Q) = Prob{Demand <= Q)
- Benefit: Ordering one more unit decreases the chance of underage:

- Expected benefit on the Q^{th} unit = $C_u \times (1-F(Q))$

Expected profit maximizing order quantity

• To minimize the expected total cost of underage and overage, order *Q* units so that the expected marginal cost with the *Q*th unit equals the expected marginal benefit with the *Q*th unit:

$$C_o \times F(Q) = C_u \times (1 - F(Q))$$

- Rearrange terms in the above equation -> $F(Q) = \frac{C_u}{C_a + C_u}$
- The ratio $C_u / (C_o + C_u)$ is called the *critical ratio*.
 - In other terms, (R-W)/(R-S). R and S are determined by the market.
 Institute of Management Technology
 Institute of Management Technology

