Institute of Management Technology2 Hyderabad

Operations & Supply Planning PGDM 2018-20

Operations Scheduling

Vinay Kumar Kalakbandi Assistant Professor Operations Management

2/14/19

Scheduling Forward scheduling: the system takes an order and schedules each operation that must be completed forward in time Can tell the earliest date an order can be completed Backward scheduling: starts with due date and schedules the required operations in reverse sequence Can tell when an order must be started in order to be done by a specific date

- Machine-limited process: equipment is the critical resource that is scheduled
- Labor-limited process: people are the key resource that is scheduled
- Most actual processes are either labor limited or machine limited but not both

Institute of Management Technology Hyderabad

Institute of

Management Technology Hyderabad

Objectives of Work-Center Scheduling

- Meet due dates
- Minimize lead time
- Minimize setup time or cost
- Minimize work-in-process inventory
- Maximize machine utilization

Job Sequencing

- Sequencing: the process of determining the job order on machines or work centers
 - Also known as priority sequencing
- Priority rules: the rules used in obtaining a job sequence
 - Can be simple or complex
 - Can use one or more pieces of information

Priority Rules for Job Sequencing FCFS – first come first served LCFS – last come first served SOT – Shortest Operating time EDD – Earliest Due Date STR – Slack Time Remaining

	1 FCFS (first-come, first-served). Orders are run in the order they arrive in the department.
2	2 SOT (shortest operating time). Run the job with the shortest completion time first, next-shortest second, and so on. This is sometimes also referred to as SPT (shortest processing time). Often this rule is combined with a lateness rule to prevent jobs with longer times being delayed too long.
:	3 EDD (earliest due date first). Run the job with the earliest due date first.
4	4 STR (slack time remaining). This is calculated as the time remaining before the due date minus the processing time remaining. Orders with the shortest slack time remaining (STR) are run first.
	STR = Time remaining before due date - Remaining processing time
ţ	5 STR/OP (slack time remaining per operation). Orders with the shortest slack time per number of operations are run first.
	STR/OP = STR/Number of remaining operations
(CR (critical ratio). This is calculated as the difference between the due date and the current date divided by the number of work days remaining. Orders with the smallest CR are run first.
1	7 LCFS (last-come, first-served). This rule occurs frequently by default. As orders arrive, they are placed on the top of the stack; the operator usually picks up the order on top to run first.
8	3 Random order or whim. The supervisors or the operators usually select whichever job they feel like running.

Job (in Order of Arrival)	Processing Time (Days)	Due Date (Days Hence)
A	3	5
В	4	6
С	2	7
D	6	9
E	1	2

	FCF	S Schedule	
Job Sequence	Processing Time (Days)	Due Date (Days Hence)	Flow Time (Days)
А	3	5	0 + 3 = 3
В	4	6	3 + 4 = 7
С	2	7	7 + 2 = 9
D	6	9	9 + 6 = 15
Е	1	2	15 + 1 = 16
Total flow ti	me = 3 + 7 + 9	+ 15 + 16 = 50 d	lays

Example 22.1: SOT Rules								
		SOT Schedule						
	Job Sequence	Processing Time (Days)	Due Date (Days Hence)	Flow Time (Days)				
	E	1	2	0 + 1 = 1				
	С	2	7	1 + 2 = 3				
	А	3	5	3 + 3 = 6				
	В	4	6	6 + 4 = 10				
	D	6	9	10 + 6 = 16				
	Total flow tir	me = 1 + 3 + 6	+ 10 + 16 = 36	days				
	Mean flow t	Mean flow time $=\frac{36}{5}=7.2$ days						
J	_		225	IMT	Institute of Management Technolog Hyderabad			

xample 22.1: EDD Rules					
	ED	D Schedule			
Job Sequence	Processing Time (Days)	Due Date (Days Hence)	Flow Time (Days)		
E	1	2	0 + 1 = 1		
А	3	5	1 + 3 = 4		
в	4	6	4 + 4 = 8		
С	2	7	8 + 2 = 10		
D	6	9	10 + 6 = 16		
Total flow tir Mean flow t	me = 1 + 4 + 8 ime = 7.8 days	+ 10 + 16 = 39 0	days		
			Institute of Management T Hyderabad		

Example 22.1: LCFS Rules							
Job Sequence	Processing Time (Days)	Due Date (Days Hence)	Flow Time (Days)				
LCFS Schedule							
E	1	2	0 + 1 = 1				
D	6	9	1 + 6 = 7				
С	2	7	7 + 2 = 9				
В	4	6	9 + 4 = 13				
А	3	5	13 + 3 = 16				
Total flow time = 46 da	ays						
Mean flow time = 9.2 d	days						
Average lateness = 4.	0 days						
			Institute of Managemen Hyderabad	t Technology			

Example 22.1: STR Rules						
STR Schedule				Slack		
E	1	2	0 + 1 = 1	2 - 1 = 1		
А	3	5	1 + 3 = 4	5 - 3 = 2		
В	4	6	4 + 4 = 8	6 - 4 = 2		
D	6	9	8 + 6 = 14	9 - 6 = 3		
С	2	7	14 + 2 = 16	7 - 2 = 5		
Total flow time = 43 days						
Mean flow time = 8.6 days						
Average lateness = 3.2 day	/S					
		_		_		
				Institute of Management Technology		
				Hyderabad		

omparison of Priority Rules					
Rule	Total Flow Time (Days)	Mean Flow Time (Days)	Average Lateness (Days)		
FCFS	50	10	4.6		
SOT	36	7.2	2.4		
EDD	39	7.8	2.4		
LCFS	46	9.2	4.0		
Random	53	10.6	5.4		
STR	43	8.6	3.2		
			Institute of Management Tech		

Lets Try an Example:									
	M1	M2							
J1	5	2							
J2	1	6							
J3	9	7							
J4	3	8							
J5	10	4							
By Step 2: Sele	ect J2 and Schedul	e 1 st (M1 time) X fent Technolog							

Continuing: (sch. is: 2)								
M1 M2								
J1	5	2						
J2	1	6						
J3	9	7						
J4	J4 3 8							
J5	J5 10 4							
Select J1 with M2 short time – schedule 5 th X out row 1								

Continuing: (sch. is 2 1)						
M1 M2						
5	2					
1	6					
9	7					
3	8					
J5 10 4						
	M1 5 1 9 3					

out Row 4

chnology

N job N machine assignment problem Hungarian Algorithm							
	C						
		J1	J2	J3]4		
	W1	82	83	69	92		
	W2 W3	11	37 69	49 5	92 86		
	W4	8	9	98	23		
2/14/19				238		Institute of Management Technology Hyderabad	

Hungarian algorithm Step 1: Subtract row minima

- For each row, find the lowest element and subtract it from each element in that row.
- Step 2: Subtract column minima
 - Similarly, for each column, find the lowest element and subtract it from each element in that column.
- Step 3: Cover all zeros with a minimum number of lines
 - Cover all zeros in the resulting matrix using a minimum number of horizontal and vertical lines.
 If n lines are required, an optimal assignment exists among the zeros. The algorithm stops.
- If less than n lines are required, continue with Step 4.
- Step 4: Create additional zeros
 - Find the smallest element (call it k) that is not covered by a line in Step 3. Subtract k from all uncovered elements, and add k to all elements that are covered twice.

2/14/19

239

Hungarian algorithm										
Step 1: Subtract row minima										
		J1	J2	J3	J4					
	W1	13	14	0	23	(-69)				
	W2	40	0	12	55	(-37)				
	W3	6	64	0	81	(-5)				
	W4	0	1	90	15	(-8)				
2/14/19					240		Institute of Management Technology Vederabad			

Hungarian Algorithm										
 Step 2: Subtract column minima 										
	J1	J2	J3	J4						
W1	13	14	0	8						
W2	40	0	12	40						
W3	6	64	0	66						
W4	0	1	90	0						
			((-15)						
				- •						
2/14/19			241		Institute of Management Technology Hyderabad					

Hungarian algorithm									
 Step 4: If required, create additional zeros 									
 Find that the smallest uncovered number. Subtract this number from all uncovered elements and add it to all elements that are covered twice. 									
		J1	J2	J3]4				
N N	N1	7	8	0	2				
V.	N2 N2	40	0	18	40 60				
V	N4	0	1	96	0				
2/14/19		-	-	243	-	Institute of Management Technology Hyderabad			

Hungarian algorithm

• Step 3: Cover all zeros with a minimum number of lines

		J1	J2	J3	J4		
	W1	7	8	0	2	x	
	W2	40	0	18	40	x	
	W3	0	58	0	60	x	
	W4	0	1	96	0	x	
						۷	Institute of Management Techno
2/14/19				244			MT Hyderabad

Optimal assignment										
		J1	J2	J3	J4					
	W1	7_	8	0	2					
	W2	40	0	18	40					
	W3	0	58	0	60					
	W4	0	1	96	0					
	W1 W2	<i>J1</i> 82 77	<i>J2</i> 83 37	<i>J3</i> 69 49	<i>J4</i> 92 92					
	W3	11	69	5	86					
2/14/19	vv4	0	9	98	245			Institute of Management Technology Hyderabad		

