

- Subgroups or samples should be selected such that
 - Chance of differences between subgroups should be maximized
 - Chance of differences due to assignable causes within a subgroup should be minimized
- Time order is the logical basis
- Snapshot approach v/s random sample approach
- Subgroup based on shifts, machines, operators etc

Vinay Kalakbandi

```
09/11/2014
```


Cable 15-6Averagewith 3-Si	Average Run Length (ARL) for an \overline{X} Chart with 3-Sigma Control Limits				
Magnitude of Process Shift	$\begin{array}{l} \text{ARL} \\ n = 1 \end{array}$	$\begin{array}{l} \text{ARL} \\ n = 4 \end{array}$			
0	370.4	370.4			
0.5σ	155.2	43.9			
1.0σ	43.9	6.3			
1.5σ	15.0	2.0			
2.0σ	6.3	1.2			
3.0σ	2.0	1.0			

The Cumulative-Sum Control Chart

- The cusum chart incorporates all information in the sequence of sample values by plotting the *cumulative sums* of the deviations of the sample values from a target value.
- If µ₀ is the target for the process mean, x
 _j is the average of the jth sample, then the cumulative sum control chart is formed by plotting the quantity

$$C_i = \sum_{j=1}^i (\overline{x}_j - \boldsymbol{\mu}_0)$$

09/11/2014

Vinay Kalakbandi

-

The Tabular or Algorithmic Cusum for monitoring the Process Mean

- Let x_i be the ith observation on the process
- If the process is in control then $x_i \sim N(\mu_0, \sigma)$
- Assume σ is known or can be estimated.
- Accumulate derivations from the target μ_0 above the target with one statistic, C^+
- Accumulate derivations from the target μ_0 below the target with another statistic, C–
- C⁺ and C⁻⁻ are one-sided upper and lower cusums, respectively.

Vinay Kalakbandi

The Tabular or Algorithmic Cusum for Monitoring the Process Mean

The statistics are computed as follows:
 <u>The Tabular Cusum</u>

$$C_{i}^{+} = \max[0, x_{i} - (\mu_{0} + k) + C_{i-1}^{+}]$$

$$C_{i}^{-} = \max[0, (\mu_{0} - k) - x_{i} + C_{i-1}^{-}]$$

starting values are $C_0^+ = C_0^- = 0$ *K* is the **reference value** (or allowance or slack value) If either statistic exceed a decision interval *H*, the process is considered to be out of control. Often taken as a $H = 5\sigma$

09/11/2014

Vinay Kalakbandi

The Tabular or Algorithmic Cusum for Monitoring the Process Mean

Selecting the reference value, K

- K is often chosen halfway between the target μ₀ and the outof-control value of the mean μ₁ that we are interested in detecting quickly.
- Shift is expressed in standard deviation units as $\mu_1 = \mu_0 + \delta \sigma$, then *K* is

$$\mathbf{K} = \frac{\mathbf{\delta}}{2}\mathbf{\sigma} = \frac{|\mathbf{\mu}_1 - \mathbf{\mu}_0|}{2}$$

09/11/2014

Vinay Kalakbandi

16

The Tabular or Algorithmic Cusum for Monitoring the Process Mean

Example 8-1

- $\mu_0 = 10, n = 1, \sigma = 1$
- Interested in detecting a shift of $1.0\sigma = 1.0(1.0) = 1.0$
- Out-of-control value of the process mean: $\mu_1 = 10 + 1 = 11$
- $K = \frac{1}{2}$ and $H = 5\sigma = 5$ (recommended, discussed in the next section)
- The equations for the statistics are then:

$$C_{i}^{+} = \max \left[0, x_{i} - 10.5 + C_{i-1}^{+} \right]$$
$$C_{i}^{-} = \max \left[0, 10.5 - x_{i} + C_{i-1}^{-} \right]$$

09/11/2014

Vinay Kalakbandi

The Tabular or Algorithmic Cusum for Monitoring the **Process Mean** CUSUM Chart for x Example 8-1 Upper CUSUN 5 Cumulative Sum 0 -5 -5 Lower CUSUM 10 30 20 0 Subgroup Number 09/11/2014 Vinay Kalakbandi 18

The Tabular or Algorithmic Cusum for Monitoring the Process Mean

Example 8-1

- The cusum control chart indicates the process is out of control.
- The next step is to search for an assignable cause, take corrective action required, and reinitialize the cusum at zero.
- If an adjustment has to be made to the process, may be helpful to estimate the process mean following the shift.

09/11/2014

Vinay Kalakbandi

The Standardized Cusums

• It may be of interest to standardize the variable x_i.

$$\mathbf{y}_{i} = \frac{\mathbf{x}_{i} - \boldsymbol{\mu}_{0}}{\boldsymbol{\sigma}}$$

• The standardized cusums are then

$$C_{i}^{+} = \max \left[0, y_{i} - k + C_{i-1}^{+} \right]$$

$$C_{i}^{-} = \max \left[0, k - y_{i} + C_{i-1}^{-} \right]$$

09/11/2014

Vinay Kalakbandi

Improving Cusum Responsiveness for Large Shifts

- Cusum control chart is *not* as effective in detecting large shifts in the process mean as the Shewhart chart.
- An alternative is to use a **combined cusum-Shewhart procedure** for on-line control.
- The combined cusum-Shewhart procedure can improve cusum responsiveness to large shifts.

Vinay Kalakbandi

```
09/11/2014
```


The Exponentially Weighted Moving Average Control Chart

<u>The Exponentially Weighted Moving Average Control</u> <u>Chart Monitoring the Process Mean</u>

• The exponentially weighted moving average (EWMA) is defined as

$$z_i = \lambda x_i + (1 - \lambda) z_{i-1}$$

where $0 < \lambda \le 1$ is a constant.

 $z_0 = \mu_0 \text{ (sometimes } z_0 = \overline{x} \text{)}$

09/11/2014

Vinay Kalakbandi

• The control limits for the EWMA control chart are

UCL =
$$\boldsymbol{\mu}_0$$
 + L $\boldsymbol{\sigma}_{\sqrt{(2-\lambda)}} \left[1 - (1-\lambda)^{2i} \right]$
CL = $\boldsymbol{\mu}_0$

LCL =
$$\mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

where L is the width of the control limits.

09/11/2014

Vinay Kalakbandi

The Exponentially Weighted Moving Average Control Chart Monitoring the Process Mean

- As *i* gets larger, the term $[1 (1 \lambda)^{2i}]$ approaches infinity.
- This indicates that after the EWMA control chart has been running for several time periods, the control limits will approach steady-state values given by

$$UCL = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$
$$CL = \mu_0$$
$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

09/11/2014

Vinay Kalakbandi

- The design parameters of the chart are L and λ .
- The parameters can be chosen to give desired ARL performance.
- In general, $0.05 \le \lambda \le 0.25$ works well in practice.
- L = 3 works reasonably well (especially with the larger value of λ .
- *L* between 2.6 and 2.8 is useful when $\lambda \le 0.1$
- Similar to the cusum, the EWMA performs well against *small shifts* but does not react to large shifts as quickly as the Shewhart chart.
- EWMA is often *superior* to the cusum for larger shifts particularly if $\lambda > 0.1$

Vinay Kalakbandi

09/11/201

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><page-footer>

Infinity Windows Sample Data							
 Three part types: 	Part	Date	Time	Nominal Length	Actual Length		
 Header Right jamb Left jamb Nominal length varies from part to part 	Right Jamb	14-Feb	6:51 AM	59.268	59.258		
	Header	14-Feb	6:54 AM	23	22.993		
	Header	14-Feb	6:56 AM	35.875	35.86		
	Right Jamb	14-Feb	7:00 AM	37.518	37.511		
	Left Jamb	14-Feb	7:08 AM	37.518	37.507		
	Header	14-Feb	7:12 AM	43.875	43.869		
	Header	14-Feb	7:14 AM	27.75	27.75		
	Right Jamb	14-Feb	7:15 AM	37.518	37.5169		
	Left Jamb	14-Feb	7:18 AM	37.518	37.5071		
	Header	14-⊢eb	10:06 AM	39.875	39.8617		
 Continuous runs; no batches 							
09/11/2014	Vinay Kalakband	I			30		

