Service Operations (SO)

Post Graduate Program for Working Executives 2014-15

Week 5

Vinay Kumar Kalakbandi Assistant Professor Operations & Systems Area

09/11/2014 Vinay Kalakbandi 1

Agenda

- Recap
- Service quality
- Servicescapes
- Managing waiting lines

Recap

- Service characteristics
- Strategic service vision
- Service package
- Service blueprinting
- Service quality

09/11/2014

Vinay Kalakbandi

3

Constructing a control chart

- · Decide what to measure and count
- Collect sample data
- Calculate and plot control limits on the control chart
- Determine if data is in control
- If non-random variation is present, fix the problem and recalculate control limits.

09/11/2014

Vinay Kalakbandi

	Ambu	lance res	_					
Sample	1	2	3	4	5	X	R	
1	5.02	5.01	4.94	4.99	4.96	4.98	0.08	
2	5.01	5.03	5.07	4.95	4.96	5.00	0.12	
3	4.99	5.00	4.93	4.92	4.99	4.97	0.08	
4	5.03	4.91	5.01	4.98	4.89	4.96	0.14	
5	4.95	4.92	5.03	5.05	5.01	4.99	0.13	
6	4.97	5.06	5.06	4.96	5.03	5.01	0.10	
7	5.05	5.01	5.10	4.96	4.99	5.02	0.14	
8	5.09	5.10	5.00	4.99	5.08	5.05	0.11	
9	5.14	5.10	4.99	5.08	5.09	5.08	0.15	
10	5.01	4.98	5.08	5.07	4.99	5.03	0.10	
						50.09	1.15	

09/11/2014 Vinay Kalakbandi

Constructing A Mean Chart

$$UCL_{X}^{-} = \overset{=}{X} + A_{2}\overset{=}{R} = 5.01 + (0.58) (.115) = 5.08$$

$$LCL_{X}^{-} = \overset{=}{X} - A_{2}\overset{=}{R} = 5.01 - (0.58) (.115) = 4.94$$

$$where \overset{=}{X} = average of sample means = \overset{=}{\Sigma}\overset{=}{X} / \overset{=}{n}$$

$$= 50.09 / 10 = 5.01$$

$$\overset{=}{R} = average range = \overset{=}{\Sigma}\overset{=}{R} / \overset{=}{k}$$

$$= 1.15 / 10 = .115$$

09/11/2014 Vinay Kalakbandi

Constructing an Range Chart

$$UCL_R = D_4 R = (2.11) (.115) = 2.43$$

$$LCL_R = D_3 R = (0) (.115) = 0$$
where $R = \sum R / k = 1.15 / 10 = .115$
 $k = \text{number of samples} = 10$
 $R = \text{range} = (\text{largest - smallest})$

09/11/2014 Vinay Kalakbandi

3σ Control Chart Factors

Sample size	$ar{ ext{X}}$ -chart	R-chart		
n	$\mathbf{A_2}$	\mathbf{D}_3	$\mathbf{D_4}$	
2	1.88	0	3.27	
3	1.02	0	2.57	
4	0.73	0	2.28	
5	0.58	0	2.11	
6	0.48	0	2.00	
7	0.42	0.08	1.92	
8	0.37	0.14	1.86	

Other charts

- P-charts
 - Calculate percentage defectives in a sample
 - an item is either good or bad
 - Based on binomial distribution
 - p = number defective / sample size, n
 - p = total no. of defectives total no. of sample observations

$$UCL_{p} = \overline{p} + 3\sqrt{\overline{p(1-p)/n}}$$

$$LCL_p = \overline{p} - 3\sqrt{\overline{p(1-p)/n}}$$

09/11/2014

Vinay Kalakbandi

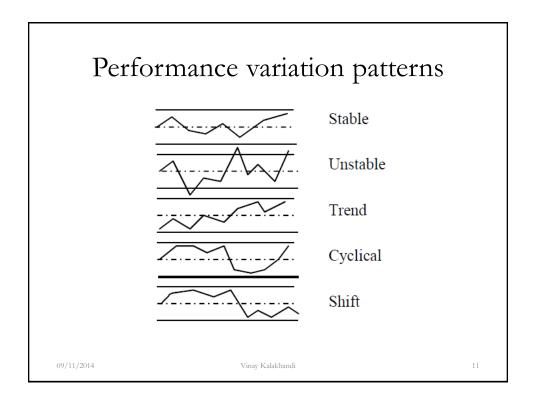
0

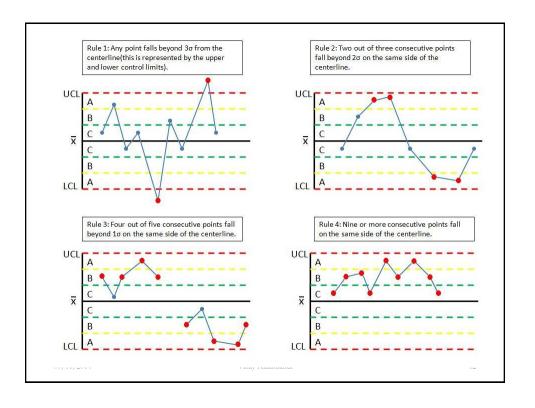
Other charts

- c Charts
 - Count number of defects in an item
 - Based on poisson distribution

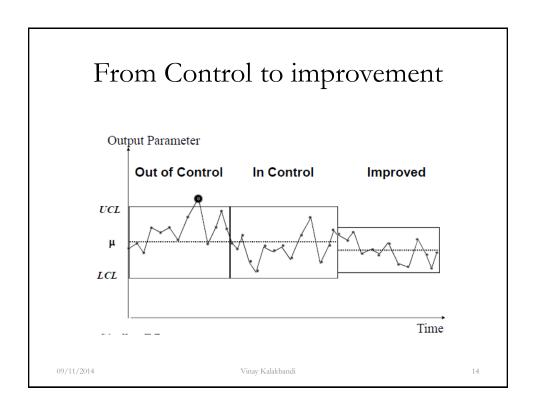
- c = number of defects in an item

 $-\mathbf{c} = \text{total number of defects}$


number of samples


 $- \qquad UCL_c = \overline{c} + 3\sqrt{\overline{c}}$

$$LCL_c = \overline{c} - 3\sqrt{\overline{c}}$$


09/11/2014

Vinay Kalakbandi

Sigma statistics

 1σ 317 per thousand

 2σ 45 per thousand

 3σ 2 per thousand

 4σ 63 per million

 5σ 574 per billion

 6σ 2 per billion

 7σ 0.3 per billion

09/11/2014 Vinay Kalakbandi 1

Key components of six sigma

- Management support
- · Project based
- Metrics based
- Structured approach
 - Define-Measure-Analyze-Improve-Control
- Tools oriented

The road to six sigma

	Project	Decision	Technical
Define	Team formation, roles and responsibilities, schedule and report	Choose project	Define "as is" process, nominate potential projects
Measure	Define metrics, schedule and report	Gap analysis	Benchmark, baseline
Analyze	Schedule and report	Determine root cause	Evaluate potential causes, get data, analyze relationships
Improve	Schedule and report	Design pilot experiment	Execute pilot experiment
Control	Schedule and report	Set up control scheme	Evaluate control scheme

09/11/2014 Vinay Kalakbandi 17

SERVICESCAPES

Opening question

09/11/2014

Vinay Kalakbandi

19

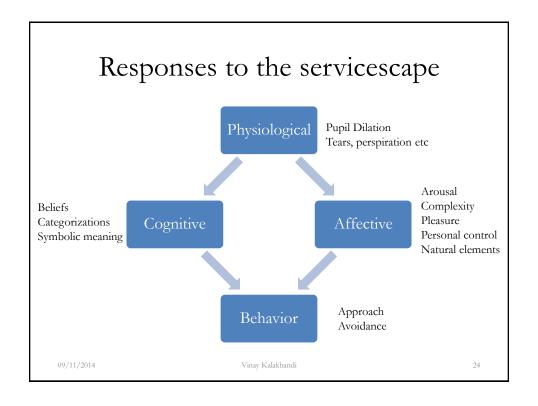
Servicescape

- The environment in which the service is delivered and where the firm and the customer interact, and any tangible commodities that facilitate performance or communication of the service
- Not only physical environment as well as virtual environment
- Anchored in environmental psychology

09/11/2014

Vinay Kalakbandi

Typology of Servicescapes


Who Performs in Physical Complexity of the Servicescape Servicescape Elaborate Lean Self-service Golf course Post office kiosk E-commerce (customer only) Water slide park **Budget hotel** Interpersonal Luxury hotel Airline terminal Bus station (both) Remote service Research lab **Telemarketing** (employee only) L.L. Bean Online tech support

Behavior in a servicescape

- Individual behavior
 - Includes customers and employees
 - Positive internal responses leads to **Approach**
 - Negative internal responses leads to **Avoidance**
 - Customers: attraction, explore, enjoy, spend, return
 - Carryout planned activity
 - Employees: affiliate, explore, stay longer, commitment

Behavior in a servicescape

- Interaction behavior
 - All social interaction is affected by the physical container in which it occurs
 - Hard seats/soft seats
 - Harvard layout of classes/Shouldice hospital
 - Difference between Metro/ordinary platforms
 - Whom do you want whom to interact with?

Servicescape dimensions and impact

- Ambient conditions
 - Effects on the five senses
 - Perfume at mall entrance
 - Cookies in the mall
 - Oxygen in the casino
 - Music played in the supermarket
 - Familiarity
 - Tempo

09/11/2014

Vinay Kalakbandi

25

Servicescape dimensions and impact

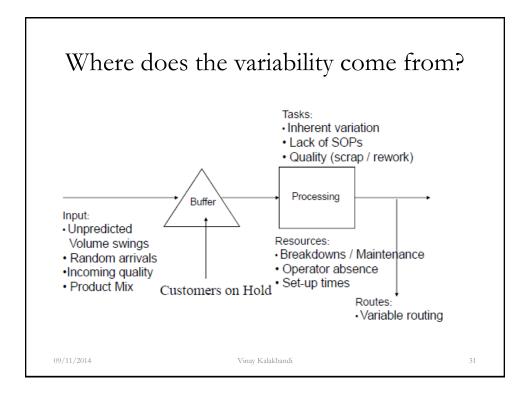
- Spatial layout and functionality
 - The new supermarkets!
 - Self service restaurants
- Signs, symbols, and artefacts
 - Visual metaphor of the organization's offering
 - Aiga symbols
 - Professor's office

Managerial Implications

- Careful and creative management of servicescape necessary
 - Helps firms achieve both external marketing goals and internal organizational goals
- Servicescape is a visual metaphor for the organization's offering
- Servicescape is the packaging of the service
- It facilitates and nurtures a certain type of interaction
- Helps as a key differentiator

09/11/2014 Vinay Kalakbandi

MANAGING WAITING LINES


Waiting lines are ubiquitous

- Banks
- Doctors
- Call centers
- Insurance agencies
- Case evaluations!

0/11/2014 Vinay Kalakbandi

Typical capacity decisions

- How many additional beds should a hospital add to limit patient backlog below 50?
- What should be the size of a call centre such no calling customer waits more than 30 seconds?
- What is the probability that when a customer walks into a bank she finds at least one teller free?
- How will an additional runway at Mumbai airport reduce aircraft waiting time?

Need to understand waiting lines

- Customers waiting are like WIP inventory
- Waiting times can have a halo effect on how customers view the rest of the service encounter
- Staffing decisions needs to consider the impact of waiting
- Every second waiting in the queue is a non-value add activity

Essential features of queuing systems

- Arrival process: rate and population
- Service process: rate and capacity
- Queue configuration
- Queue discipline
- Service process

09/11/2014 Vinay Kalakbandi

Agree?

- If service rate is higher than arrival rate then there would not be any queue
- With one server if X is the average number of people in the queue, with two servers, the average number of people in the queue would be X/2

Performance metrics of a M/M/1 queue

Server utilisation

In the case of single server: $\rho = \frac{\lambda}{\mu}$ In the case of multiple servers: $\rho = \frac{\lambda}{\mu}$

Little's Formula

Average time customer spends in system

$$W_s = \frac{L_s}{\lambda}$$

Average time customer spends in queue

$$W_q = \frac{L_q}{\lambda}$$

In the case of a Single Server

Average number of customers in system

$$L_s = L_q + \frac{\lambda}{u}$$

09/11/2014

Vinay Kalakbandi

35

The psychology of waiting

- Waiting is an integral part of our lives
 - But causes so much grief!
- Perception is more important than reality
- Unoccupied time feels longer than occupied time
 - Distract and entertain

09/11/2014

Vinay Kalakbandi

The psychology of waiting

- Pre-process waits feel longer than in-process waits
 - Communicate as soon as possible and get customers in process
 - Wait in the bar!
- Uncertain or unexplained waits feel longer than known waits
 - Communicate frequently
 - Impact of anchoring and prospect theory

09/11/2014 Vinay Kalakbandi 3

What's new in queuing theory

 Diseconomies of queue pooling in the emergency department http://hbswk.hbs.edu/item/7425.html

