

Daily Scheduling of Telephone Operator Workshifts

Vinay Kả̉áabandi
163

Scheduling Part-time Bank Tellers

164

Managing supply

- Increasing customer participation
- Creating adjustable capacity
- Sharing capacity
- Cross training employees
- Using part time employees

MANAGING DEMAND

Segmenting Demand at a Health Clinic

12/15/20

Smoothing Demand by Appointment Scheduling

Day	Appointments
Monday	84
Tuesday	89
Wednesday	124
Thursday	129
Friday	114
167	Institute of Management Technology Hyderabad

167

Discriminatory Pricing for Camping

Experience type	Days and weeks of camping season	No. of days	Daily fee
1	Saturdays and Sundays of weeks 10 to 15, plus Dominion Day and civic holidays Saturdays and Sundays of weeks 3 to 9 and 15 to 19, plus Victoria Day	14	$\$ 6.00$
2	Fridays of weeks 3 to 15, plus all other days of weeks 9 to 15 that are not in experience type 1 or 2 Rest of camping season	43	2.50
3	78	free	0.50

EXISTING REVENUE VS PROJECTED REVENUE FROM DISCRIMINATORY PRICING				
	Existing flat fee of \$2.50		Discriminatory fee	
Experience	Campsites	Revenue	Campsites occupied (est.)	Revenue
1	5.891	\$14,727	5,000	\$30,000
2	8,978	22,445	8,500	21,250
3	6,129	15,322	15,500	7.750
4	4.979	12.447		
Total	25,977	\$ 64,941	29,000	\$59,000

Managing demand

- Promoting off peak demand
- Developing complementary services
- Reservation systems and overbooking

Yield Management

170

Yield Management

- "Selling the right capacity
to the right customer at the right price"
- Business Requirements
- Limited Fixed Capacity
- Business environment where YM can help
- Ability to segment markets
- Perishable inventory
- Advance sales
- Fluctuating demand
- Accurate, detailed information systems

Industries that Fully Use YM Techniques

- Transportation-oriented industries
- Airlines
- Railroads
- Car rental agencies
- Shipping
- Vacation-oriented industries
- Tour operators
- Cruise ships
- Resorts
- Hotels, medical, broadcasting

Elements of a Yield Management System

- Overbooking
- Price Discrimination \& Capacity Allocation
- Network Management

Overbooking

- Need for overbooking
- Fairness concerns
- Pros and cons v/s waitlisting

Overbooking

- Two basic costs:
- Stock outs
- customers have a reservation and there are no rooms left
- Customers have booked tickets but no seats available
- Overage
- customers denied advance reservation and rooms are unoccupied
- Empty seats flying in the aircraft

Hotel No-Show Experience

No-Shows	$\%$ of Experiences	Cumulative $\%$ of Experience
0	5	5
1	10	15
2	20	35
3	15	50
4	15	65
5	10	75
6	5	80
7	5	85
8	5	90
9	5	95
10	5	100

What other data do you need?

- Room rent is \$50
- 20% customers mutter menacingly and walk out
- Others are so upset they break furniture worth \$150

Stock outs: $0.8 \times \$ 150=\$ 120$
Overage: \$50

Overbooking Approach 1: Using Averages

The average number of no-shows is calculated by $0 \times 0.05+1 \times 0.10+2 \times 0.20+3 \times 0.15$ $+\ldots+10 \times 0.05=4.05$.

Take up to four overbookings.

178

Overbooking Approach 2: Spreadsheet Analysis

				Numbe	of Rese	vation	Over	oked						
No-Shows	Probability	0	1	2	3	4	5	6	7	8		9		10
\bigcirc	0.05	\$ 0	\$120	\$240	\$360	\$480	\$600	\$720	\$840	\$960		,080		,200
1	0.10	\$ 50	\$ 0	\$120	\$240	\$360	\$480	\$600	\$720	\$840	\$	960		,080
2	0.20	\$100	\$ 50	\$ 0	\$120	\$240	\$360	\$480	\$600	\$720	\$	840	\$	960
3	0.15	\$150	\$100	\$ 50	\$ 0	\$120	\$240	\$360	\$480	\$600	\$	720	\$	840
4	0.15	\$200	\$150	\$100	\$ 50	\$ 0	\$120	\$240	\$360	\$480	\$	600	\$	720
5	0.10	\$250	\$200	\$150	\$100	\$ 50	\$ 0	\$120	\$240	\$360	\$	480	\$	600
6	0.05	\$300	\$250	\$200	\$150	\$100	\$ 50	\$ 0	\$120	\$240	\$	360	\$	480
7	0.05	\$350	\$300	\$250	\$200	\$150	\$100	\$ 50	\$ 0	\$120	\$	240	\$	360
8	0.05	\$400	\$350	\$300	\$250	\$200	\$150	\$100	\$ 50	\$ 0	\$	120	\$	240
9	0.05	\$450	\$400	\$350	\$300	\$250	\$200	\$150	\$100	\$ 50	\$	O	\$	120
10	0.05	\$500	\$450	\$400	\$350	\$300	\$250	\$200	\$150	\$100	\$	50	\$	0
Total Cost		\$203	\$161	\$137	\$146	\$181	\$242	\$319	\$405	\$500	\$	603	\$	714
$E V=$														

Overbooking Approach 3: Marginal Cost Approach

Book more guests until:

$\mathrm{E}($ cost of dissatisfied customer) $=\mathrm{E}$ (cost of empty room)

- Cost of dissatisfied customer *

Probability that there are fewer no-shows
than overbooked rooms =

- 120 * Prob (no shows < overbook)
- Cost of empty room *

Probability that there are more no-shows
than overbooked rooms

- 50* Prob (no shows >= overbook)

Hotel No show experience

- $\mathrm{Co} /(\mathrm{Cs}+\mathrm{Co})=\mathrm{P}($ Overbook \geq No Shows) Hotel Data
- $\mathrm{Cs}=\$ 120, \mathrm{Co}=\$ 50.00$
$50 /(120+50)$
- $\mathrm{Co} /(\mathrm{Cs}+\mathrm{Co})=29 . \%$
- Overbook 2 rooms

Table 9.1: Hotel No-Show Experience
$\begin{array}{lll}\text { No-Shows } & \text { \% of Experiences } & \begin{array}{l}\text { Cumulative \% of } \\ \text { Experiences } \\ 0\end{array} \\ 1 & 5 \checkmark & 5\end{array}$
181

Capacity Allocation with Exogenous Prices

- Business capacity $=100 \underset{\longrightarrow \text { Role - } 100}{ }$

$$
0.75 \times(100-51)
$$

- Demand forecast: premium profit (\$10,000/seat) demand: uniformly distributed (51, 100)
- Costs you \$2500
- Discount price (\$2,500/seat) demand:
unlimited demand at this price - infinite discounters available
- Costs you \$o

184

Static Methods

- Fixed Number, Fixed Time Rules
- Fixed Time Rule
- Accept discount bookings until a specific date
- Motivation
- Distinct, Static System - Fixed Number Rule
- Average of 75 premium bookings, so reserve » exactly 75 slots for premium customers
» exactly 25 slots for discount customers

Static Methods

- Fixed Number, Fixed Time Rules
- Nested, Static system - Fixed Number Rule Average of 75 premium bookings, so reserve 75 slots for premium customers remaining 25 go FCFS
- Example:

85 premium and 15 passengers wish to book

- Distinct, Static system: 75 premium, 15 discount Nested, Static system:

$$
85 \text { premium,15 discount }
$$

Nested, Static System - Fixed Number Rule

- EMSR heuristic (Expected Marginal Seat Revenue)
- Allocating first through 51 ${ }^{\text {st }}$ seats revenue per seat: 100% certain of $\$ \underline{10,000}$ premium vs. $\$ 2,500$ discount Allocating $52^{\text {nd }}$ seat 98\% certain of \$10,000
$=\$ 9,800$ expected revenue vs. $\$ 2,500$ discount
Allocating $53^{\text {nd }}$ seat
96% certain of $\$ 10,000$
$=\$ 9,600$ expected revenue vs. $\$ 2,500$ discount

Nested, Static System - Fixed Number Rule

$-88^{\text {th }}$ seat
24% certain of $\$ 10,000=\$ 2,400$ vs. $\$ 2,500$ discount
On average flight:
75 premium passengers
13 discount passengers
(12) empty seats

Optimal Allocation 87 seats premium,

13 seats discount

- Rule:

Accept discount passenger until $\mathrm{pr}($ spill $)$ < discount revenue/premium revenue

Capacity Allocation

 tack Rose- Littlewood's rule - 2 Clans
- Accept discount passenger until $\frac{500}{8000} C R$ $\mathrm{pr}($ spill $)$ < discount revenue/premium revenue
- EMSR a and EMSRb
- When there are multiple classes
- EMSR a: Protect each class against every lower class
- EMSR b: Protect each class using weighted average of the lower class
- Refer Worksheet

190

191

Four Types of Fares

Fare Type:	BUSINESS	COACH	DISCOUNT	PROMOTION
Prices:	250-140\%	140\%-70\%	60\%-30\%	40\%-25\%
Letter codes:	F, C, J	Y	H, Q, M	K, V
Commissions:	10\%-30\%	10\%-15\%	10\%-15\%	0\%-10\%
Seat size:	BIG	small	small	small
Service:	high	normal	normal	normal
Early Purchase?	0 days	0 days	14-30 days	30-60 days
Refundable?	yes	yes	partial	no
Min. Stay?	no	no	7-14 days	7-14 days
Days "full":	under 5\%	under 5\%	5\%-50\%	20\%-80\%
Typical user:	business	business	holiday	group
Elasticity:	-0.5	-0.7	-1.4	-2.0

Seasonal Allocation of Rooms by Service Class for Resort Hotel

194

Yield Management - Implementation

- Alienating Customers
- Difficulty of customer understanding
- Customer cheating
- Employee Issues
- Limiting decision power
- Sabotage: add, not subtract responsibility
- Reward system: in-synch with managerial goals
- Consistency across personnel and units
- Exception processing
- Monitoring
- Cost/Time of Implementation

THANK YOU

